Spaces:
Sleeping
Sleeping
Yaron Koresh
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -30,15 +30,15 @@ height=896
|
|
30 |
device = "cuda"
|
31 |
dtype = torch.float16
|
32 |
result=[]
|
33 |
-
step =
|
34 |
-
accu=
|
35 |
repo = "ByteDance/AnimateDiff-Lightning"
|
36 |
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
37 |
-
base = "emilianJR/epiCRealism"
|
38 |
-
|
39 |
-
|
40 |
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
|
41 |
-
|
42 |
|
43 |
css="""
|
44 |
input, input::placeholder {
|
@@ -141,6 +141,7 @@ def Piper(image,positive,negative,motion):
|
|
141 |
pipe.unload_lora_weights()
|
142 |
if motion != "":
|
143 |
pipe.load_lora_weights(motion, adapter_name="motion")
|
|
|
144 |
pipe.set_adapters(["motion"], [0.7])
|
145 |
last_motion = motion
|
146 |
|
@@ -193,7 +194,7 @@ def run(i,m,p1,p2,*result):
|
|
193 |
|
194 |
return out
|
195 |
|
196 |
-
pipe = AnimateDiffPipeline.from_pretrained(base, torch_dtype=dtype).to(device)
|
197 |
pipe.scheduler = DDIMScheduler(
|
198 |
clip_sample=False,
|
199 |
beta_start=0.00085,
|
|
|
30 |
device = "cuda"
|
31 |
dtype = torch.float16
|
32 |
result=[]
|
33 |
+
step = 30
|
34 |
+
accu=7.5
|
35 |
repo = "ByteDance/AnimateDiff-Lightning"
|
36 |
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
37 |
+
#base = "emilianJR/epiCRealism"
|
38 |
+
base = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
|
39 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=dtype)
|
40 |
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
|
41 |
+
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)
|
42 |
|
43 |
css="""
|
44 |
input, input::placeholder {
|
|
|
141 |
pipe.unload_lora_weights()
|
142 |
if motion != "":
|
143 |
pipe.load_lora_weights(motion, adapter_name="motion")
|
144 |
+
pipe.fuse_lora()
|
145 |
pipe.set_adapters(["motion"], [0.7])
|
146 |
last_motion = motion
|
147 |
|
|
|
194 |
|
195 |
return out
|
196 |
|
197 |
+
pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
198 |
pipe.scheduler = DDIMScheduler(
|
199 |
clip_sample=False,
|
200 |
beta_start=0.00085,
|