Spaces:
Sleeping
Sleeping
Yaron Koresh
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -23,18 +23,18 @@ import jax
|
|
23 |
import jax.numpy as jnp
|
24 |
|
25 |
last_motion=None
|
26 |
-
fps=
|
27 |
-
time=
|
28 |
device = "cuda"
|
29 |
dtype = torch.float16
|
30 |
result=[]
|
31 |
step = 2
|
32 |
repo = "ByteDance/AnimateDiff-Lightning"
|
33 |
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
34 |
-
base = "emilianJR/epiCRealism"
|
35 |
-
|
36 |
#adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3")
|
37 |
-
|
38 |
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
|
39 |
|
40 |
css="""
|
@@ -128,7 +128,7 @@ def generate_random_string(length):
|
|
128 |
return ''.join(random.choice(characters) for _ in range(length))
|
129 |
|
130 |
@spaces.GPU(duration=65)
|
131 |
-
def Piper(
|
132 |
global last_motion
|
133 |
|
134 |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
|
@@ -141,12 +141,12 @@ def Piper(name,positive_prompt,negative,motion):
|
|
141 |
last_motion = motion
|
142 |
|
143 |
return pipe(
|
144 |
-
|
145 |
negative_prompt=negative,
|
146 |
height=1024,
|
147 |
width=576,
|
148 |
num_inference_steps=step,
|
149 |
-
guidance_scale=
|
150 |
num_frames=(fps*time)
|
151 |
)
|
152 |
|
@@ -162,7 +162,7 @@ def infer(pm):
|
|
162 |
_do.append(f'{p1}')
|
163 |
posi = " ".join(_do)
|
164 |
|
165 |
-
out = Piper(
|
166 |
export_to_gif(out.frames[0],name,fps=fps)
|
167 |
return name
|
168 |
|
@@ -184,7 +184,7 @@ def run(m,p1,p2,*result):
|
|
184 |
|
185 |
return out
|
186 |
|
187 |
-
pipe = AnimateDiffPipeline.from_pretrained(base, torch_dtype=dtype).to(device)
|
188 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
|
189 |
pipe.enable_free_init(method="butterworth", use_fast_sampling=False)
|
190 |
|
|
|
23 |
import jax.numpy as jnp
|
24 |
|
25 |
last_motion=None
|
26 |
+
fps=25
|
27 |
+
time=5
|
28 |
device = "cuda"
|
29 |
dtype = torch.float16
|
30 |
result=[]
|
31 |
step = 2
|
32 |
repo = "ByteDance/AnimateDiff-Lightning"
|
33 |
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
34 |
+
#base = "emilianJR/epiCRealism"
|
35 |
+
base = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
|
36 |
#adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3")
|
37 |
+
vae = AutoencoderKL.from_single_file("https://huggingface.co/stabilityai/sd-vae-ft-mse-original/vae-ft-mse-840000-ema-pruned.safetensors")
|
38 |
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
|
39 |
|
40 |
css="""
|
|
|
128 |
return ''.join(random.choice(characters) for _ in range(length))
|
129 |
|
130 |
@spaces.GPU(duration=65)
|
131 |
+
def Piper(positive,negative,motion):
|
132 |
global last_motion
|
133 |
|
134 |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
|
|
|
141 |
last_motion = motion
|
142 |
|
143 |
return pipe(
|
144 |
+
positive,
|
145 |
negative_prompt=negative,
|
146 |
height=1024,
|
147 |
width=576,
|
148 |
num_inference_steps=step,
|
149 |
+
guidance_scale=1,
|
150 |
num_frames=(fps*time)
|
151 |
)
|
152 |
|
|
|
162 |
_do.append(f'{p1}')
|
163 |
posi = " ".join(_do)
|
164 |
|
165 |
+
out = Piper(posi,neg,pm["m"])
|
166 |
export_to_gif(out.frames[0],name,fps=fps)
|
167 |
return name
|
168 |
|
|
|
184 |
|
185 |
return out
|
186 |
|
187 |
+
pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, torch_dtype=dtype).to(device)
|
188 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
|
189 |
pipe.enable_free_init(method="butterworth", use_fast_sampling=False)
|
190 |
|