Yaron Koresh commited on
Commit
57971cb
·
verified ·
1 Parent(s): 4d6bd23

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -10
app.py CHANGED
@@ -6,7 +6,7 @@ import numpy as np
6
  import spaces
7
  import random
8
  import string
9
- from diffusers import StableDiffusion3Pipeline
10
  import torch
11
  from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
12
  import requests
@@ -16,15 +16,16 @@ pool = ProcessPoolExecutor(4)
16
  pool.__enter__()
17
 
18
  #model_id = "runwayml/stable-diffusion-v1-5"
19
- model_id = "stabilityai/stable-diffusion-3-medium-diffusers"
 
20
 
21
  device = "cuda" if torch.cuda.is_available() else "cpu"
22
  if torch.cuda.is_available():
23
  torch.cuda.max_memory_allocated(device=device)
24
- pipe = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token'))
25
  pipe = pipe.to(device)
26
  else:
27
- pipe = StableDiffusion3Pipeline.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token'))
28
  pipe = pipe.to(device)
29
 
30
  def translate(text,lang):
@@ -74,16 +75,16 @@ def generate_random_string(length):
74
  def Piper(_do):
75
  return pipe(
76
  _do,
77
- height=448,
78
- width=448,
79
- negative_prompt='vivid colors; text; logo',
80
- num_inference_steps=125,
81
- guidance_scale=9
82
  )
83
 
84
  def infer(prompt):
85
  name = generate_random_string(12)+".png"
86
- _do = f'acrylic colors; { translate(prompt,"english") }; photograph-like real'.upper()
87
  image = Piper(_do).images[0].save(name)
88
  return name
89
 
 
6
  import spaces
7
  import random
8
  import string
9
+ from diffusers import AutoPipelineForText2Image
10
  import torch
11
  from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
12
  import requests
 
16
  pool.__enter__()
17
 
18
  #model_id = "runwayml/stable-diffusion-v1-5"
19
+ #model_id = "stabilityai/stable-diffusion-3-medium-diffusers"
20
+ model_id = "kandinsky-community/kandinsky-2-2-decoder"
21
 
22
  device = "cuda" if torch.cuda.is_available() else "cpu"
23
  if torch.cuda.is_available():
24
  torch.cuda.max_memory_allocated(device=device)
25
+ pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token'))
26
  pipe = pipe.to(device)
27
  else:
28
+ pipe = AutoPipelineForText2Image.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token'))
29
  pipe = pipe.to(device)
30
 
31
  def translate(text,lang):
 
75
  def Piper(_do):
76
  return pipe(
77
  _do,
78
+ height=768,
79
+ width=512,
80
+ negative_prompt='ugly, deformed, disfigured, poor details, bad anatomy, labels, texts, logos',
81
+ num_inference_steps=50,
82
+ guidance_scale=8.5
83
  )
84
 
85
  def infer(prompt):
86
  name = generate_random_string(12)+".png"
87
+ _do = f'{ translate(prompt,"english") }, cold color palette, muted colors, detailed, 8k'.lower()
88
  image = Piper(_do).images[0].save(name)
89
  return name
90