Spaces:
Sleeping
Sleeping
Yaron Koresh
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -58,167 +58,6 @@ working = False
|
|
58 |
model = T5ForConditionalGeneration.from_pretrained("t5-base")
|
59 |
tokenizer = T5Tokenizer.from_pretrained("t5-base")
|
60 |
|
61 |
-
def calculate_shift(
|
62 |
-
image_seq_len,
|
63 |
-
base_seq_len: int = 256,
|
64 |
-
max_seq_len: int = 4096,
|
65 |
-
base_shift: float = 0.5,
|
66 |
-
max_shift: float = 1.16,
|
67 |
-
):
|
68 |
-
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
69 |
-
b = base_shift - m * base_seq_len
|
70 |
-
mu = image_seq_len * m + b
|
71 |
-
return mu
|
72 |
-
|
73 |
-
def retrieve_timesteps(
|
74 |
-
scheduler,
|
75 |
-
num_inference_steps: Optional[int] = None,
|
76 |
-
device: Optional[Union[str, torch.device]] = None,
|
77 |
-
timesteps: Optional[List[int]] = None,
|
78 |
-
sigmas: Optional[List[float]] = None,
|
79 |
-
**kwargs,
|
80 |
-
):
|
81 |
-
if timesteps is not None and sigmas is not None:
|
82 |
-
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
83 |
-
if timesteps is not None:
|
84 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
85 |
-
timesteps = scheduler.timesteps
|
86 |
-
num_inference_steps = len(timesteps)
|
87 |
-
elif sigmas is not None:
|
88 |
-
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
89 |
-
timesteps = scheduler.timesteps
|
90 |
-
num_inference_steps = len(timesteps)
|
91 |
-
else:
|
92 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
93 |
-
timesteps = scheduler.timesteps
|
94 |
-
return timesteps, num_inference_steps
|
95 |
-
|
96 |
-
# FLUX pipeline function
|
97 |
-
@torch.inference_mode()
|
98 |
-
def flux_pipe_call_that_returns_an_iterable_of_images(
|
99 |
-
self,
|
100 |
-
prompt: Union[str, List[str]] = None,
|
101 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
102 |
-
height: Optional[int] = None,
|
103 |
-
width: Optional[int] = None,
|
104 |
-
num_inference_steps: int = 28,
|
105 |
-
timesteps: List[int] = None,
|
106 |
-
guidance_scale: float = 3.5,
|
107 |
-
num_images_per_prompt: Optional[int] = 1,
|
108 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
109 |
-
latents: Optional[torch.FloatTensor] = None,
|
110 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
111 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
112 |
-
output_type: Optional[str] = "pil",
|
113 |
-
return_dict: bool = True,
|
114 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
115 |
-
max_sequence_length: int = 512,
|
116 |
-
good_vae: Optional[Any] = None,
|
117 |
-
):
|
118 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
119 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
120 |
-
|
121 |
-
# 1. Check inputs
|
122 |
-
self.check_inputs(
|
123 |
-
prompt,
|
124 |
-
prompt_2,
|
125 |
-
height,
|
126 |
-
width,
|
127 |
-
prompt_embeds=prompt_embeds,
|
128 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
129 |
-
max_sequence_length=max_sequence_length,
|
130 |
-
)
|
131 |
-
|
132 |
-
self._guidance_scale = guidance_scale
|
133 |
-
self._joint_attention_kwargs = joint_attention_kwargs
|
134 |
-
self._interrupt = False
|
135 |
-
|
136 |
-
# 2. Define call parameters
|
137 |
-
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
138 |
-
device = self._execution_device
|
139 |
-
|
140 |
-
# 3. Encode prompt
|
141 |
-
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
142 |
-
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
143 |
-
prompt=prompt,
|
144 |
-
prompt_2=prompt_2,
|
145 |
-
prompt_embeds=prompt_embeds,
|
146 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
147 |
-
device=device,
|
148 |
-
num_images_per_prompt=num_images_per_prompt,
|
149 |
-
max_sequence_length=max_sequence_length,
|
150 |
-
lora_scale=lora_scale,
|
151 |
-
)
|
152 |
-
# 4. Prepare latent variables
|
153 |
-
num_channels_latents = self.transformer.config.in_channels // 4
|
154 |
-
latents, latent_image_ids = self.prepare_latents(
|
155 |
-
batch_size * num_images_per_prompt,
|
156 |
-
num_channels_latents,
|
157 |
-
height,
|
158 |
-
width,
|
159 |
-
prompt_embeds.dtype,
|
160 |
-
device,
|
161 |
-
generator,
|
162 |
-
latents,
|
163 |
-
)
|
164 |
-
# 5. Prepare timesteps
|
165 |
-
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
166 |
-
image_seq_len = latents.shape[1]
|
167 |
-
mu = calculate_shift(
|
168 |
-
image_seq_len,
|
169 |
-
self.scheduler.config.base_image_seq_len,
|
170 |
-
self.scheduler.config.max_image_seq_len,
|
171 |
-
self.scheduler.config.base_shift,
|
172 |
-
self.scheduler.config.max_shift,
|
173 |
-
)
|
174 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
175 |
-
self.scheduler,
|
176 |
-
num_inference_steps,
|
177 |
-
device,
|
178 |
-
timesteps,
|
179 |
-
sigmas,
|
180 |
-
mu=mu,
|
181 |
-
)
|
182 |
-
self._num_timesteps = len(timesteps)
|
183 |
-
|
184 |
-
# Handle guidance
|
185 |
-
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
186 |
-
|
187 |
-
# 6. Denoising loop
|
188 |
-
for i, t in enumerate(timesteps):
|
189 |
-
if self.interrupt:
|
190 |
-
continue
|
191 |
-
|
192 |
-
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
193 |
-
|
194 |
-
noise_pred = self.transformer(
|
195 |
-
hidden_states=latents,
|
196 |
-
timestep=timestep / 1000,
|
197 |
-
guidance=guidance,
|
198 |
-
pooled_projections=pooled_prompt_embeds,
|
199 |
-
encoder_hidden_states=prompt_embeds,
|
200 |
-
txt_ids=text_ids,
|
201 |
-
img_ids=latent_image_ids,
|
202 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
203 |
-
return_dict=False,
|
204 |
-
)[0]
|
205 |
-
# Yield intermediate result
|
206 |
-
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
207 |
-
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
208 |
-
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
209 |
-
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
210 |
-
|
211 |
-
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
212 |
-
torch.cuda.empty_cache()
|
213 |
-
|
214 |
-
# Final image using good_vae
|
215 |
-
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
216 |
-
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
217 |
-
image = good_vae.decode(latents, return_dict=False)[0]
|
218 |
-
self.maybe_free_model_hooks()
|
219 |
-
torch.cuda.empty_cache()
|
220 |
-
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
221 |
-
|
222 |
def log(msg):
|
223 |
print(f'{datetime.now().time()} {msg}')
|
224 |
|
@@ -1577,6 +1416,5 @@ if __name__ == "__main__":
|
|
1577 |
inputs=[cover,top,bottom],
|
1578 |
outputs=[cover]
|
1579 |
)
|
1580 |
-
|
1581 |
|
1582 |
demo.queue().launch()
|
|
|
58 |
model = T5ForConditionalGeneration.from_pretrained("t5-base")
|
59 |
tokenizer = T5Tokenizer.from_pretrained("t5-base")
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
def log(msg):
|
62 |
print(f'{datetime.now().time()} {msg}')
|
63 |
|
|
|
1416 |
inputs=[cover,top,bottom],
|
1417 |
outputs=[cover]
|
1418 |
)
|
|
|
1419 |
|
1420 |
demo.queue().launch()
|