Spaces:
Sleeping
Sleeping
Yaron Koresh
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -28,14 +28,19 @@ def port_inc():
|
|
28 |
else:
|
29 |
os.environ["CUSTOM_PORT"]=str(int(env)+1)
|
30 |
|
31 |
-
def init_pool():
|
|
|
|
|
|
|
|
|
32 |
port_inc()
|
33 |
|
34 |
#pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=os.getenv("hf_token")).to(device)
|
35 |
#pipe2 = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to(device)
|
36 |
#pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True)
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
def pipe_t2i():
|
41 |
global PIPE
|
@@ -96,7 +101,7 @@ def generate_random_string(length):
|
|
96 |
return ''.join(random.choice(characters) for _ in range(length))
|
97 |
|
98 |
@spaces.GPU(duration=55)
|
99 |
-
def
|
100 |
pipe = pipe_t2i()
|
101 |
try:
|
102 |
retu = pipe(
|
@@ -139,7 +144,7 @@ def main(p1,p2,*result):
|
|
139 |
rng = list(range(ln))
|
140 |
arr = [p for _ in rng]
|
141 |
out = None
|
142 |
-
with Pool(ln, initializer=init_pool) as pool:
|
143 |
out = pool.imap(infer,arr)
|
144 |
return list(out)
|
145 |
|
@@ -155,7 +160,7 @@ def infer(p):
|
|
155 |
neg = _dont
|
156 |
else:
|
157 |
neg = None
|
158 |
-
output =
|
159 |
if output == None:
|
160 |
return None
|
161 |
else:
|
@@ -163,7 +168,7 @@ def infer(p):
|
|
163 |
if neg == None:
|
164 |
return name
|
165 |
img = load_image(name).convert("RGB")
|
166 |
-
output2 = Piper2(
|
167 |
if output2 == None:
|
168 |
return None
|
169 |
else:
|
|
|
28 |
else:
|
29 |
os.environ["CUSTOM_PORT"]=str(int(env)+1)
|
30 |
|
31 |
+
def init_pool(_1,_2):
|
32 |
+
global infer1
|
33 |
+
global infer2
|
34 |
+
infer1 = _1
|
35 |
+
infer2 = _2
|
36 |
port_inc()
|
37 |
|
38 |
#pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=os.getenv("hf_token")).to(device)
|
39 |
#pipe2 = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to(device)
|
40 |
#pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True)
|
41 |
|
42 |
+
pp1=pipe_t2i()
|
43 |
+
pp2=pipe_i2i()
|
44 |
|
45 |
def pipe_t2i():
|
46 |
global PIPE
|
|
|
101 |
return ''.join(random.choice(characters) for _ in range(length))
|
102 |
|
103 |
@spaces.GPU(duration=55)
|
104 |
+
def Piper1(pipe,_do):
|
105 |
pipe = pipe_t2i()
|
106 |
try:
|
107 |
retu = pipe(
|
|
|
144 |
rng = list(range(ln))
|
145 |
arr = [p for _ in rng]
|
146 |
out = None
|
147 |
+
with Pool(ln, initializer=init_pool, initargs=(pp1,pp2)) as pool:
|
148 |
out = pool.imap(infer,arr)
|
149 |
return list(out)
|
150 |
|
|
|
160 |
neg = _dont
|
161 |
else:
|
162 |
neg = None
|
163 |
+
output = Piper1(infer1,'A '+" ".join(_do))
|
164 |
if output == None:
|
165 |
return None
|
166 |
else:
|
|
|
168 |
if neg == None:
|
169 |
return name
|
170 |
img = load_image(name).convert("RGB")
|
171 |
+
output2 = Piper2(infer2,img,p1,neg)
|
172 |
if output2 == None:
|
173 |
return None
|
174 |
else:
|