Spaces:
Runtime error
Runtime error
commit
Browse files
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: 💡
|
| 4 |
colorFrom: yellow
|
| 5 |
colorTo: gray
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Song Cover Image Generator
|
| 3 |
emoji: 💡
|
| 4 |
colorFrom: yellow
|
| 5 |
colorTo: gray
|
app.py
CHANGED
|
@@ -50,18 +50,15 @@ base = "black-forest-labs/FLUX.1-schnell"
|
|
| 50 |
|
| 51 |
# variable data
|
| 52 |
|
| 53 |
-
|
| 54 |
|
| 55 |
# precision data
|
| 56 |
|
| 57 |
seq=512
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
height=512
|
| 61 |
image_steps=8
|
| 62 |
-
|
| 63 |
-
img_accu=9
|
| 64 |
-
vid_accu=7
|
| 65 |
|
| 66 |
# ui data
|
| 67 |
|
|
@@ -124,24 +121,8 @@ function custom(){
|
|
| 124 |
|
| 125 |
# torch pipes
|
| 126 |
|
| 127 |
-
def disabled_safety_checker(images, clip_input):
|
| 128 |
-
if len(images.shape)==4:
|
| 129 |
-
num_images = images.shape[0]
|
| 130 |
-
return images, [False]*num_images
|
| 131 |
-
else:
|
| 132 |
-
return images, False
|
| 133 |
-
|
| 134 |
image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
|
| 135 |
image_pipe.enable_model_cpu_offload()
|
| 136 |
-
image_pipe.safety_checker = None
|
| 137 |
-
|
| 138 |
-
video_pipe = CogVideoXImageToVideoPipeline.from_pretrained(
|
| 139 |
-
"THUDM/CogVideoX-5b-I2V",
|
| 140 |
-
torch_dtype=torch.bfloat16
|
| 141 |
-
).to(device)
|
| 142 |
-
video_pipe.vae.enable_tiling()
|
| 143 |
-
video_pipe.vae.enable_slicing()
|
| 144 |
-
video_pipe.safety_checker = None
|
| 145 |
|
| 146 |
# functionality
|
| 147 |
|
|
@@ -149,12 +130,9 @@ def generate_random_string(length):
|
|
| 149 |
characters = str(ascii_letters + digits)
|
| 150 |
return ''.join(random.choice(characters) for _ in range(length))
|
| 151 |
|
| 152 |
-
@spaces.GPU(
|
| 153 |
-
def pipe_generate(
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
if img is None:
|
| 157 |
-
img = image_pipe(
|
| 158 |
prompt=p1,
|
| 159 |
negative_prompt=p2,
|
| 160 |
height=height,
|
|
@@ -164,133 +142,99 @@ def pipe_generate(img,p1,p2,time,title):
|
|
| 164 |
num_inference_steps=image_steps,
|
| 165 |
max_sequence_length=seq,
|
| 166 |
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
|
| 167 |
-
|
| 168 |
-
additional_image = True
|
| 169 |
-
|
| 170 |
-
if title != "":
|
| 171 |
-
draw = ImageDraw.Draw(img)
|
| 172 |
-
textheight=min(( width // 10 ), ( height // 5 ))
|
| 173 |
-
rows = 1
|
| 174 |
-
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
|
| 175 |
-
textwidth = draw.textlength(title,font)
|
| 176 |
-
x = (width - textwidth) // 2
|
| 177 |
-
y = (height - (textheight * rows // 2)) // 2
|
| 178 |
-
draw.text((x, y), title, (255,255,255), font=font)
|
| 179 |
-
|
| 180 |
-
additional_image = img if additional_image else None
|
| 181 |
-
|
| 182 |
-
if time == 0.0:
|
| 183 |
-
return img
|
| 184 |
-
|
| 185 |
-
return video_pipe(
|
| 186 |
-
prompt=p1,
|
| 187 |
-
negative_prompt=p2.replace("textual content, ",""),
|
| 188 |
-
image=img,
|
| 189 |
-
num_inference_steps=video_steps,
|
| 190 |
-
guidance_scale=vid_accu,
|
| 191 |
-
num_videos_per_prompt=1,
|
| 192 |
-
num_frames=(fps*time),
|
| 193 |
-
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
|
| 194 |
-
).frames[0]
|
| 195 |
-
|
| 196 |
-
def handle_generate(*_inp):
|
| 197 |
|
| 198 |
-
|
| 199 |
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
inp[2] = f"textual,labeled,divined,distorted,discontinuous,ugly,blurry,low resolution,motionless,static,wrong body anatomy{inp[2]}"
|
| 209 |
-
|
| 210 |
-
if len(inp[1]) >= 2:
|
| 211 |
-
inp[1] = "," + inp[1].strip(",").strip(" ")
|
| 212 |
-
|
| 213 |
-
inp[1] = f'realistic,natural,genuine,reasonable,highly detailed{inp[1]}'
|
| 214 |
|
| 215 |
print(f"""
|
| 216 |
-
|
| 217 |
Positive: {inp[1]}
|
| 218 |
|
| 219 |
Negative: {inp[2]}
|
| 220 |
-
|
| 221 |
""")
|
| 222 |
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
-
name = generate_random_string(12) +
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
else:
|
| 229 |
-
export_to_video(pipe_out,name,fps=fps)
|
| 230 |
-
if inp[3] == 0.0:
|
| 231 |
-
return name, None
|
| 232 |
-
else:
|
| 233 |
-
return additional_image, name
|
| 234 |
|
| 235 |
def ui():
|
| 236 |
-
global result
|
| 237 |
with gr.Blocks(theme=gr.themes.Citrus(),css=css,js=js) as demo:
|
| 238 |
gr.Markdown(f"""
|
| 239 |
-
#
|
| 240 |
""")
|
| 241 |
with gr.Row():
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
with gr.Row():
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
placeholder="Excluded keywords",
|
| 257 |
container=False,
|
| 258 |
max_lines=1
|
| 259 |
)
|
| 260 |
with gr.Row():
|
| 261 |
-
|
| 262 |
-
minimum=0.0,
|
| 263 |
-
maximum=3.0,
|
| 264 |
-
value=0.0,
|
| 265 |
-
step=1.0,
|
| 266 |
-
label="Duration (0s = PNG)"
|
| 267 |
-
)
|
| 268 |
-
with gr.Row(elem_id="col-container"):
|
| 269 |
-
with gr.Column():
|
| 270 |
-
img = gr.Image(label="Upload photo",show_label=True,container=False,type="pil")
|
| 271 |
-
with gr.Column():
|
| 272 |
-
res_img = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
|
| 273 |
-
with gr.Column():
|
| 274 |
-
res_vid = gr.Video(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, show_share_button=False)
|
| 275 |
with gr.Row():
|
| 276 |
-
|
| 277 |
|
| 278 |
gr.on(
|
| 279 |
triggers=[
|
| 280 |
-
|
| 281 |
-
prompt.submit,
|
| 282 |
-
prompt2.submit
|
| 283 |
],
|
| 284 |
fn=handle_generate,
|
| 285 |
-
inputs=[
|
| 286 |
-
outputs=[
|
| 287 |
)
|
| 288 |
demo.queue().launch()
|
| 289 |
|
| 290 |
# entry
|
| 291 |
|
| 292 |
if __name__ == "__main__":
|
| 293 |
-
os.chdir(os.path.abspath(os.path.dirname(__file__)))
|
| 294 |
ui()
|
| 295 |
|
| 296 |
-
# end
|
|
|
|
| 50 |
|
| 51 |
# variable data
|
| 52 |
|
| 53 |
+
|
| 54 |
|
| 55 |
# precision data
|
| 56 |
|
| 57 |
seq=512
|
| 58 |
+
width=4320
|
| 59 |
+
height=4320
|
|
|
|
| 60 |
image_steps=8
|
| 61 |
+
img_accu=0
|
|
|
|
|
|
|
| 62 |
|
| 63 |
# ui data
|
| 64 |
|
|
|
|
| 121 |
|
| 122 |
# torch pipes
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
|
| 125 |
image_pipe.enable_model_cpu_offload()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
# functionality
|
| 128 |
|
|
|
|
| 130 |
characters = str(ascii_letters + digits)
|
| 131 |
return ''.join(random.choice(characters) for _ in range(length))
|
| 132 |
|
| 133 |
+
@spaces.GPU()
|
| 134 |
+
def pipe_generate(p1,p2):
|
| 135 |
+
return image_pipe(
|
|
|
|
|
|
|
|
|
|
| 136 |
prompt=p1,
|
| 137 |
negative_prompt=p2,
|
| 138 |
height=height,
|
|
|
|
| 142 |
num_inference_steps=image_steps,
|
| 143 |
max_sequence_length=seq,
|
| 144 |
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
|
| 145 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
def handle_generate(artist,song,genre,lyrics):
|
| 148 |
|
| 149 |
+
pos_artist = re.sub("([ \t\n]){1,}", " ", artist).strip()
|
| 150 |
+
pos_song = re.sub("([ \t\n]){1,}", " ", song).strip()
|
| 151 |
+
pos_song = ' '.join(word[0].upper() + word[1:] for word in pos_song.split())
|
| 152 |
+
pos_genre = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).upper().strip()
|
| 153 |
+
pos_lyrics = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).lower().strip()
|
| 154 |
+
neg = f"Textual Labeled Distorted Discontinuous Ugly Blurry"
|
| 155 |
+
pos = f'Realistic Natural Genuine Reasonable Detailed { pos_genre } GENRE SONG COVER FOR { pos_song }: "{ pos_lyrics }"'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
print(f"""
|
|
|
|
| 158 |
Positive: {inp[1]}
|
| 159 |
|
| 160 |
Negative: {inp[2]}
|
|
|
|
| 161 |
""")
|
| 162 |
|
| 163 |
+
img = pipe_generate(pos,neg)
|
| 164 |
+
|
| 165 |
+
draw = ImageDraw.Draw(img)
|
| 166 |
+
|
| 167 |
+
rows = 1
|
| 168 |
+
labes_distance = 1 // 3
|
| 169 |
+
|
| 170 |
+
textheight=min(( width // 10 ), ( height // 5 ))
|
| 171 |
+
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
|
| 172 |
+
textwidth = draw.textlength(pos_song,font)
|
| 173 |
+
x = (width - textwidth) // 2
|
| 174 |
+
y = (height - (textheight * rows // 2)) // 2
|
| 175 |
+
y = y - (y // labes_distance)
|
| 176 |
+
draw.text((x, y), pos_song, (255,255,255), font=font)
|
| 177 |
+
|
| 178 |
+
textheight=min(( width // 12 ), ( height // 6 ))
|
| 179 |
+
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
|
| 180 |
+
textwidth = draw.textlength(pos_artist,font)
|
| 181 |
+
x = (width - textwidth) // 2
|
| 182 |
+
y = (height - (textheight * rows // 2)) // 2
|
| 183 |
+
y = y + (y // labes_distance)
|
| 184 |
+
draw.text((x, y), pos_artist, (255,255,255), font=font)
|
| 185 |
|
| 186 |
+
name = generate_random_string(12) + ".png"
|
| 187 |
+
img.save(name)
|
| 188 |
+
return name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
def ui():
|
|
|
|
| 191 |
with gr.Blocks(theme=gr.themes.Citrus(),css=css,js=js) as demo:
|
| 192 |
gr.Markdown(f"""
|
| 193 |
+
# Song Cover Image Generator
|
| 194 |
""")
|
| 195 |
with gr.Row():
|
| 196 |
+
with gr.Column():
|
| 197 |
+
artist = gr.Textbox(
|
| 198 |
+
placeholder="Artist name",
|
| 199 |
+
container=False,
|
| 200 |
+
max_lines=1
|
| 201 |
+
)
|
| 202 |
+
with gr.Column():
|
| 203 |
+
song = gr.Textbox(
|
| 204 |
+
placeholder="Song name",
|
| 205 |
+
container=False,
|
| 206 |
+
max_lines=1
|
| 207 |
+
)
|
| 208 |
+
with gr.Column():
|
| 209 |
+
genre = gr.Textbox(
|
| 210 |
+
placeholder="Genre",
|
| 211 |
+
container=False,
|
| 212 |
+
max_lines=1
|
| 213 |
+
)
|
| 214 |
with gr.Row():
|
| 215 |
+
lyrics = gr.Textbox(
|
| 216 |
+
placeholder="Lyrics (English)",
|
|
|
|
| 217 |
container=False,
|
| 218 |
max_lines=1
|
| 219 |
)
|
| 220 |
with gr.Row():
|
| 221 |
+
cover = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
with gr.Row():
|
| 223 |
+
run = gr.Button("Generate",elem_classes="btn")
|
| 224 |
|
| 225 |
gr.on(
|
| 226 |
triggers=[
|
| 227 |
+
run.click
|
|
|
|
|
|
|
| 228 |
],
|
| 229 |
fn=handle_generate,
|
| 230 |
+
inputs=[artist,song,genre,lyrics],
|
| 231 |
+
outputs=[cover]
|
| 232 |
)
|
| 233 |
demo.queue().launch()
|
| 234 |
|
| 235 |
# entry
|
| 236 |
|
| 237 |
if __name__ == "__main__":
|
|
|
|
| 238 |
ui()
|
| 239 |
|
| 240 |
+
# end
|