import gradio as gr import os import re #from tempfile import NamedTemporaryFile import numpy as np import spaces import random import string from diffusers import StableDiffusion3Pipeline import torch from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor import requests from lxml.html import fromstring pool = ProcessPoolExecutor(4) pool.__enter__() #model_id = "runwayml/stable-diffusion-v1-5" model_id = "stabilityai/stable-diffusion-3-medium-diffusers" device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token')) pipe = pipe.to(device) else: pipe = StableDiffusion3Pipeline.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token')) pipe = pipe.to(device) def translate(text,lang): text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip() lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip() user_agents = [ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' ] url = f'https://www.google.com/search?q={lang}: {text}' print(url) resp = requests.get( url = url, headers = { 'User-Agent': random.choice(user_agents) } ) print(resp) content = resp.content html = fromstring(content) rslt = html.xpath('//pre[@aria-label="Translated text"]/span') translated = text try: t = rslt[0].text.strip() translated = t except: print(f'"{text}" is already in {lang}!') ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip() print(ret) return ret def generate_random_string(length): characters = string.ascii_letters + string.digits return ''.join(random.choice(characters) for _ in range(length)) @spaces.GPU def Piper(_do): return pipe( _do, height=512, width=512, negative_prompt="", num_inference_steps=100, guidance_scale=10 ) def infer(prompt): name = generate_random_string(12)+".png" _do = f'true {prompt1}:'.upper() image = Piper(_do).images[0].save(name) return name css=""" #col-container { margin: 0 auto; max-width: 15cm; } #image-container { aspect-ratio: 1 / 1; } .dropdown-arrow { display: none !important; } """ js=""" function custom(){ window.Wait = function (Test, Success, Fail = function () { }, timeout = Number.MAX_SAFE_INTEGER) { let seconds = 0; function Internal() { if (!Test()) { if (seconds >= timeout) { Fail(); return; } setTimeout(function () { seconds += 0.01; Internal(...arguments); }, 300); return; } Success(); } Internal(); }; Wait(function(){ return document.querySelector("div#prompt input") },function(){ document.querySelector("div#prompt input").setAttribute(maxlength,"38"); },function(){}); } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Image Generator Currently running on {power_device}. """) with gr.Row(): prompt = gr.Textbox( elem_id="prompt", placeholder="Describe the photo", container=False, rtl=True, max_lines=1 ) with gr.Row(): run_button = gr.Button("Run") result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath') run_button.click( fn = infer, inputs = [prompt], outputs = [result] ) demo.queue().launch()