import gradio as gr import os import re #from tempfile import NamedTemporaryFile import numpy as np import spaces import random import string from diffusers import AutoPipelineForText2Image import torch from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor import requests from lxml.html import fromstring pool = ProcessPoolExecutor(4) pool.__enter__() #model_id = "runwayml/stable-diffusion-v1-5" #model_id = "kandinsky-community/kandinsky-3" model_id = "stabilityai/stable-diffusion-3-medium-diffusers" device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token')) pipe = pipe.to(device) else: pipe = AutoPipelineForText2Image.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token')) pipe = pipe.to(device) def translate(text,lang): text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip() lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip() user_agents = [ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' ] url = 'https://www.google.com/search' resp = requests.get( url = url, params = {'q': f'{lang} translate {text}'}, headers = { 'User-Agent': random.choice(user_agents) } ) content = resp.content html = fromstring(content) #src = html.xpath('//pre[@data-placeholder="Enter text"]/textarea')[0].text.strip() translated = text try: trgt = html.xpath('//span[@class="target-language"]')[0].text.strip() rslt = html.xpath('//pre[@aria-label="Translated text"]/span')[0].text.strip() if trgt.lower() == lang.lower(): translated = rslt except: raise Exception("Translation Error!") ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip() print(ret) return ret def generate_random_string(length): characters = string.ascii_letters + string.digits return ''.join(random.choice(characters) for _ in range(length)) @spaces.GPU(duration=120) def Piper(_do,_dont): return pipe( _do, height=512, width=1024, negative_prompt=_dont, num_inference_steps=200, guidance_scale=10 ) def infer(prompt,prompt2): name = generate_random_string(12)+".png" prompt_en = translate(prompt,"english") prompt2_en = translate(prompt2,"english") if prompt == None or prompt.strip() == "": _do = 'soft vivid colors, rough texture, dynamic poze, proportional arrangement, reasonable combination, amazing, realistic, award winning photograph, soft lighting, deep field, highly detailed, blurred bright background' else: _do = f'{ prompt_en }, soft vivid colors, rough texture, dynamic poze, proportional arrangement, reasonable combination, amazing, realistic, award winning photograph, soft lighting, deep field, highly detailed, blurred bright background' if prompt2 == None or prompt2.strip() == "": _dont = 'ugly, deformed, disfigured, poor details, bad anatomy, logos, texts, labels' else: _dont = f'ugly, deformed, disfigured, poor details, bad anatomy, {prompt2_en} where in {prompt_en}, {prompt2_en}, logos where in {prompt_en}, texts where in {prompt_en}, labels where in {prompt_en}' image = Piper(_do,_dont).images[0].save(name) return name css=""" footer { display: none !important; } #col-container { margin: 0 auto; max-width: 15cm; } #image-container { aspect-ratio: 1024 / 512; } .dropdown-arrow { display: none !important; } """ js=""" function custom(){ document.querySelector("div#prompt input").setAttribute("maxlength","32"); document.querySelector("div#prompt2 input").setAttribute("maxlength","16"); } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Image Generator Currently running on {power_device}. """) with gr.Row(): prompt = gr.Textbox( elem_id="prompt", placeholder="Photo Description", container=False, rtl=True, max_lines=1 ) with gr.Row(): prompt2 = gr.Textbox( elem_id="prompt2", placeholder="Forbidden Content", container=False, rtl=True, max_lines=1 ) with gr.Row(): run_button = gr.Button("Run") result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath', show_share_button=False) prompt.submit( fn = infer, inputs = [prompt,prompt2], outputs = [result] ) prompt2.submit( fn = infer, inputs = [prompt,prompt2], outputs = [result] ) run_button.click( fn = infer, inputs = [prompt,prompt2], outputs = [result] ) demo.queue().launch()