File size: 6,255 Bytes
b4f9b4b
f1052d9
a67a3c8
b4f9b4b
210ed13
95af88e
210ed13
b1328e8
57971cb
210ed13
76b48d0
b4f9b4b
ecc81cb
62c5b0c
36185e1
76b48d0
62c5b0c
f8fb4da
8d6fc68
 
210ed13
f8fb4da
210ed13
 
57971cb
210ed13
 
57971cb
210ed13
 
3ed5fef
c6d02b3
 
 
 
1d16cc9
 
c6d02b3
 
 
2c7ffe4
 
 
c6d02b3
a597e6b
 
 
 
 
 
 
 
 
c6d02b3
6cdce4d
c6d02b3
c6e402b
84291d5
0307843
7206ba2
a597e6b
48e1ac1
758f177
c6d02b3
84291d5
 
0307843
 
 
f2fa35d
0307843
 
 
 
 
 
f2fa35d
0b4c2e7
0307843
83d3e5a
 
 
b4f9b4b
 
 
 
 
1f26a53
dd2b7f9
1f747ea
7300f25
bf3b5c9
af5aa60
dd2b7f9
f460f8b
abb850c
452be41
 
dd2b7f9
b4f9b4b
ae2310a
 
0c095d9
f460f8b
0c095d9
f460f8b
0c095d9
69fc9e7
0c095d9
69fc9e7
dd2b7f9
b4f9b4b
210ed13
 
33f3309
 
 
210ed13
 
02471b0
33f3309
b9d2cc5
af5aa60
210ed13
2daa864
 
 
210ed13
 
aac4d05
32ecfac
2c7ffe4
 
0b4c2e7
 
 
210ed13
 
 
 
 
aac4d05
210ed13
 
62c5b0c
 
210ed13
02471b0
 
aac4d05
2c7ffe4
dd2b7f9
 
 
 
 
 
2c7ffe4
02471b0
 
 
 
 
 
0b8a852
0c095d9
 
 
 
 
 
 
 
 
 
210ed13
 
dd2b7f9
210ed13
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
import os
import re
#from tempfile import NamedTemporaryFile
import numpy as np
import spaces
import random
import string
from diffusers import AutoPipelineForText2Image
import torch
from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
import requests
from lxml.html import fromstring

pool = ProcessPoolExecutor(4)
pool.__enter__()

#model_id = "runwayml/stable-diffusion-v1-5"
#model_id = "kandinsky-community/kandinsky-3"
model_id = "stabilityai/stable-diffusion-3-medium-diffusers"

device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token'))
    pipe = pipe.to(device)
else: 
    pipe = AutoPipelineForText2Image.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token'))
    pipe = pipe.to(device)

def translate(text,lang):
    
    if text == None or lang == None:
        return ""
        
    text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
    lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()
    
    if text == "" or lang == "":
        return ""

    if len(text) > 38:
        raise Exception("Translation Error: Too long text!")
        
    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
    ]

    url = 'https://www.google.com/search'

    resp = requests.get(
        url = url,
        params = {'q': f'{lang} translate {text}'},
        headers = {
            'User-Agent': random.choice(user_agents)
        }
    )
    
    content = resp.content
    html = fromstring(content)
    
    #src = html.xpath('//pre[@data-placeholder="Enter text"]/textarea')[0].text.strip()

    translated = text
    
    try:   
        trgt = html.xpath('//span[@class="target-language"]')[0].text.strip()
        rslt = html.xpath('//pre[@aria-label="Translated text"]/span')[0].text.strip()
        if trgt.lower() == lang.lower():
            translated = rslt
    except:
        raise Exception("Translation Error!")

    ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
    print(ret)
    return ret

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

@spaces.GPU(duration=120)
def Piper(_do,_dont):
    return pipe(
        _do,
        height=512,
        width=1024,
        negative_prompt=_dont,
        num_inference_steps=400,
        guidance_scale=10
    )

def infer(prompt,prompt2):
    name = generate_random_string(12)+".png"
    prompt_en = translate(prompt,"english")
    prompt2_en = translate(prompt2,"english")
    if prompt == None or prompt.strip() == "":
        _do = 'soft vivid colors, rough texture, dynamic poze, reasonable, realistic, photograph, soft lighting, deep field, highly detailed, bright background'
    else:
        _do = f'{ prompt_en }, soft vivid colors, rough texture, dynamic poze, reasonable, realistic, photograph, soft lighting, deep field, highly detailed, bright background'
    if prompt2 == None or prompt2.strip() == "":
        _dont = 'ugly, deformed, disfigured, poor details, bad anatomy, logos, texts, labels'
    else:
        _dont = f'ugly, deformed, disfigured, poor details, bad anatomy, {prompt2_en} where in {prompt_en}, {prompt2_en}, logos where in {prompt_en}, texts where in {prompt_en}, labels where in {prompt_en}'
    image = Piper(_do,_dont).images[0].save(name)
    return name

css="""
footer {
    display: none !important;
}
#col-container {
    margin: 0 auto;
    max-width: 15cm;
 }
#image-container {
    aspect-ratio: 1024 / 512;
}
.dropdown-arrow {
    display: none !important;
}
"""

js="""
function custom(){
    document.querySelector("div#prompt input").setAttribute("maxlength","30");
    document.querySelector("div#prompt2 input").setAttribute("maxlength","30");
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
            # Image Generator
            Currently running on {power_device}.
        """)
        with gr.Row():
            prompt = gr.Textbox(
                elem_id="prompt",
                placeholder="(Required Content)",
                container=False,
                rtl=True,
                max_lines=1
            )
            prompt2 = gr.Textbox(
                elem_id="prompt2",
                placeholder="(Forbidden Content)",
                container=False,
                rtl=True,
                max_lines=1
            )
        with gr.Row():
            run_button = gr.Button("Run")
        result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)
    prompt.submit(
        fn = infer,
        inputs = [prompt,prompt2],
        outputs = [result]
    )
    prompt2.submit(
        fn = infer,
        inputs = [prompt,prompt2],
        outputs = [result]
    )
    run_button.click(
        fn = infer,
        inputs = [prompt,prompt2],
        outputs = [result]
    )

demo.queue().launch()