File size: 2,266 Bytes
b4f9b4b
 
210ed13
 
b1328e8
62c5b0c
210ed13
76b48d0
b4f9b4b
 
62c5b0c
76b48d0
 
62c5b0c
 
210ed13
 
 
 
 
62c5b0c
210ed13
 
62c5b0c
210ed13
 
3ed5fef
 
b4f9b4b
3ed5fef
 
b4f9b4b
 
 
 
 
62c5b0c
b4f9b4b
3ed5fef
b4f9b4b
210ed13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62c5b0c
 
210ed13
 
 
 
 
 
 
 
 
 
62c5b0c
210ed13
 
62c5b0c
210ed13
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import gradio as gr
#from tempfile import NamedTemporaryFile
import numpy as np
import random
import string
from diffusers import StableDiffusionPipeline as DiffusionPipeline
import torch
from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
import requests
from lxml.html.soupparser import fromstring

pool = ProcessPoolExecutor(4)
pool.__enter__()

model_id = "runwayml/stable-diffusion-v1-5"

device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
    pipe = pipe.to(device)
else: 
    pipe = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
    pipe = pipe.to(device)

def translate(text,lang):
    html_str = requests.get( url = "https://translate.google.com", params = {"sl": "auto", "tl": lang, "op": "translate", "text": text} ).text()
    tree = fromstring(html_str)
    translated = tree.xpath('span[lang="'+lang+'"]/span/span/text()')[0]
    return translated

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

def infer(prompt):
    name = generate_random_string(12)+".png"
    image = pipe(translate(prompt,"en")).images[0].save(name)
    return name

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
            # Image Generator
            Currently running on {power_device}.
        """)
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(label="Result", show_label=False, type='filepath')
    run_button.click(
        fn = infer,
        inputs = [prompt],
        outputs = [result]
    )

demo.queue().launch()