Spaces:
Running
Running
File size: 8,404 Bytes
f1052d9 a67a3c8 95af88e 210ed13 b1328e8 210ed13 b4f9b4b a58c3bb ecc81cb 9f1f2bf 026afe1 77872ec af97d45 bc115c5 9642724 166635a 568c974 66fc53c 359486d 66fc53c 210ed13 9f1f2bf 568c974 9f1f2bf 210ed13 9f1f2bf c6d02b3 9f1f2bf c6d02b3 9f1f2bf 1d16cc9 9f1f2bf c6d02b3 2c7ffe4 a597e6b fd34825 706151f c6e402b 84291d5 7206ba2 a597e6b 48e1ac1 758f177 84291d5 f2fa35d 369a3fa 397731d 544df84 f2fa35d eb977a1 83d3e5a b4f9b4b b263b2a 9642724 9f1f2bf ebe916c 83d3d2d ebe916c 72493a8 a588239 5afec29 967386d ebe916c 34f0a8c 52c6881 452be41 b263b2a 42906cf 9f1f2bf 9642724 42906cf 9642724 42906cf 9642724 b263b2a 7f06f4f 07d7428 7f06f4f 359486d 9932afd b4f9b4b 967386d ba73260 9642724 ba73260 7c25f42 9642724 52c6881 9642724 ebe916c 9642724 9f1f2bf 9642724 210ed13 f86add6 a345db9 840cd7b 647941b 0ec3daa 840cd7b a345db9 0ec3daa a345db9 763a02d 34c1550 33f3309 210ed13 0ec3daa 33f3309 f285313 5afec29 210ed13 2daa864 cacb176 91c50b4 db40b0c f7a31e7 2daa864 210ed13 aac4d05 32ecfac 1acb407 9932afd 0b4c2e7 aac4d05 7dd59c4 210ed13 9db21d2 210ed13 02471b0 aac4d05 9932afd dd2b7f9 02471b0 b632387 f285313 01ee4f0 9f1f2bf 5afec29 560ff39 026afe1 560ff39 026afe1 019b2bc 026afe1 9932afd 026afe1 4a68766 9932afd 560ff39 9f1f2bf 2478f2d 560ff39 2478f2d 560ff39 9f1f2bf 026afe1 9932afd 210ed13 716f353 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os
import re
import spaces
import random
import string
import torch
import requests
import gradio as gr
import numpy as np
from lxml.html import fromstring
from transformers import pipeline
from torch.multiprocessing import Pool, Process, set_start_method
#from pathos.multiprocessing import ProcessPool as Pool
#from pathos.threading import ThreadPool as Pool
#from diffusers.pipelines.flux import FluxPipeline
#from diffusers.utils import export_to_gif
#from huggingface_hub import hf_hub_download
#from safetensors.torch import load_file
from diffusers import DiffusionPipeline, StableDiffusionXLImg2ImgPipeline
from diffusers.utils import load_image
#import jax
#import jax.numpy as jnp
import torch._dynamo
set_start_method("spawn", force=True)
torch._dynamo.config.suppress_errors = True
#pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1", token=os.getenv("hf_token")).to(device)
#pipe2 = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to(device)
#pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True)
PIPE = None
def pipe_t2i():
global PIPE
if PIPE is None:
PIPE = pipeline("text-to-image", model="black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1", tokenizer="black-forest-labs/FLUX.1-schnell", device=-1, token=os.getenv("hf_token"))
return PIPE
def pipe_i2i():
global PIPE
if PIPE is None:
PIPE = pipeline("image-to-image", model="stabilityai/stable-diffusion-xl-refiner-1.0", tokenizer="stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, device=-1, variant="fp16", use_safetensors=True)
PIPE.unet = torch.compile(PIPE.unet, mode="reduce-overhead", fullgraph=True)
return PIPE
def translate(text,lang):
if text == None or lang == None:
return ""
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()
if text == "" or lang == "":
return ""
if len(text) > 38:
raise Exception("Translation Error: Too long text!")
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
query_text = f'Please translate {padded_chars}, into {lang}'
url = f'https://www.google.com/search?q={query_text}'
resp = requests.get(
url = url,
headers = {
'User-Agent': random.choice(user_agents)
}
)
content = resp.content
html = fromstring(content)
translated = text
try:
src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip()
src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
if trgt_lang == lang:
translated = trgt_text
except:
print(f'Translation Warning: Failed To Translate!')
ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
print(ret)
return ret
def generate_random_string(length):
characters = string.ascii_letters + string.digits
return ''.join(random.choice(characters) for _ in range(length))
@spaces.GPU(duration=35)
def Piper(_do):
pipe = pipe_t2i()
try:
retu = pipe(
_do,
height=512,
width=512,
num_inference_steps=4,
max_sequence_length=256,
guidance_scale=0
)
return retu
except Exception as e:
print(e)
return None
@spaces.GPU(duration=35)
def Piper2(img,posi,neg):
pipe = pipe_i2i()
try:
retu = pipe2(
prompt=posi,
negative_prompt=neg,
image=img
)
return retu
except Exception as e:
print(e)
return None
@spaces.GPU(duration=35)
def tok(txt):
toks = pipe.tokenizer(txt)['input_ids']
print(toks)
return toks
def infer(p1,p2):
name = generate_random_string(12)+".png"
_do = ['beautiful', 'playful', 'photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable coloring', 'rough texture', 'best quality', 'focused']
if p1 != "":
_do.append(f'{p1}')
if p2 != "":
_dont = f'{p2} where in {p1}'
neg = _dont
else:
neg = None
output = Piper('A '+" ".join(_do))
if output == None:
return None
else:
output.images[0].save(name)
if neg == None:
return name
img = load_image(name).convert("RGB")
output2 = Piper2(img,p1,neg)
if output2 == None:
return None
else:
output2.images[0].save("_"+name)
return "_"+name
css="""
input, input::placeholder {
text-align: center !important;
}
*, *::placeholder {
direction: ltr !important;
font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6,span,p,pre {
width: 100% !important;
text-align: center !important;
display: block !important;
}
footer {
display: none !important;
}
#col-container {
margin: 0 auto !important;
max-width: 15cm !important;
}
.image-container {
aspect-ratio: 448 / 448 !important;
}
.dropdown-arrow {
display: none !important;
}
*:has(.btn), .btn {
width: 100% !important;
margin: 0 auto !important;
}
"""
js="""
function custom(){
document.querySelector("div#prompt input").setAttribute("maxlength","38")
document.querySelector("div#prompt2 input").setAttribute("maxlength","38")
}
"""
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
result = []
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# MULTI-LANGUAGE IMAGE GENERATOR
""")
with gr.Row():
prompt = gr.Textbox(
elem_id="prompt",
placeholder="INCLUDE",
container=False,
max_lines=1
)
with gr.Row():
prompt2 = gr.Textbox(
elem_id="prompt2",
placeholder="EXCLUDE",
container=False,
max_lines=1
)
with gr.Row():
run_button = gr.Button("START",elem_classes="btn",scale=0)
with gr.Row():
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
def _ret(p):
print(f'Starting!')
v = infer(p["a"],p["b"])
print(f'Finished!')
return v
def _rets(p1,p2):
p1_en = translate(p1,"english")
p2_en = translate(p2,"english")
p = {"a":p1_en,"b":p2_en}
ln = len(result)
rng = range(ln)
p_arr = [p for _ in rng]
pool = Pool(processes=ln)
lst = list( pool.imap( _ret, p_arr ) )
pool.clear()
return lst
#return list( _ret(p1_en,p2_en) )
run_button.click(fn=_rets,inputs=[prompt,prompt2],outputs=result)
demo.queue().launch(server_port=6900) |