Spaces:
Running
Running
import gradio as gr | |
import os | |
import re | |
#from tempfile import NamedTemporaryFile | |
import numpy as np | |
import spaces | |
import random | |
import string | |
from diffusers import StableDiffusion3Pipeline | |
import torch | |
from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor | |
import requests | |
from lxml.html import fromstring | |
pool = ProcessPoolExecutor(4) | |
pool.__enter__() | |
#model_id = "runwayml/stable-diffusion-v1-5" | |
model_id = "stabilityai/stable-diffusion-3-medium-diffusers" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token')) | |
pipe = pipe.to(device) | |
else: | |
pipe = StableDiffusion3Pipeline.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token')) | |
pipe = pipe.to(device) | |
def translate(text,lang): | |
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip() | |
lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip() | |
user_agents = [ | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' | |
] | |
url = f'https://www.google.com/search?q=translate to {lang}: {text}' | |
print(url) | |
resp = requests.get( | |
url = url, | |
headers = { | |
'User-Agent': random.choice(user_agents) | |
} | |
) | |
print(resp) | |
content = resp.content | |
html = fromstring(content) | |
rslt = html.xpath('//pre[@aria-label="Translated text"]/span') | |
translated = text | |
try: | |
t = rslt[0].text.strip() | |
translated = t | |
except: | |
print(f'"{text}" is already in {lang}!') | |
ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip() | |
print(ret) | |
return ret | |
def generate_random_string(length): | |
characters = string.ascii_letters + string.digits | |
return ''.join(random.choice(characters) for _ in range(length)) | |
def Piper(_do, _dont): | |
return pipe( | |
_do, | |
height=480, | |
width=480, | |
negative_prompt=_dont, | |
num_inference_steps=400, | |
guidance_scale=10 | |
) | |
def infer(prompt1,prompt2,prompt3,prompt4): | |
name = generate_random_string(12)+".png" | |
if prompt1 == None: | |
prompt1 = "any" | |
else: | |
prompt1 = " and ".join([translate(v,"english").upper() for v in prompt1]) | |
if prompt2 == None: | |
prompt2 = "any" | |
else: | |
prompt2 = " and ".join([translate(v,"english").upper() for v in prompt2]) | |
if prompt3 == None: | |
prompt3 = "any" | |
else: | |
prompt3 = " and ".join([translate(v,"english").upper() for v in prompt3]) | |
if prompt4 == None: | |
prompt4 = "none" | |
else: | |
prompt4 = " and ".join([translate(v,"english").upper() for v in prompt4]) | |
_do = f'Show an authentic {prompt3} scene, while focusing on the details, of {prompt1}, as the main elements, and, showing {prompt2} in the background.' | |
_dont = f'ANY usage of {prompt4}...' | |
print(_do) | |
print(_dont) | |
image = Piper(_do, _dont).images[0].save(name) | |
return name | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 13cm; | |
} | |
#image-container { | |
aspect-ratio: 1 / 1; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(theme=gr.themes.Soft(),css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Image Generator | |
Currently running on {power_device}. | |
""") | |
with gr.Column(): | |
with gr.Row(): | |
prompt1 = gr.Dropdown( | |
multiselect=True, | |
allow_custom_value=True, | |
max_choices=3, | |
label="Foreground Elements", | |
show_label=True, | |
container=True | |
) | |
with gr.Row(): | |
prompt2 = gr.Dropdown( | |
multiselect=True, | |
allow_custom_value=True, | |
max_choices=4, | |
label="Background Elements", | |
show_label=True, | |
container=True | |
) | |
with gr.Row(): | |
prompt3 = gr.Dropdown( | |
multiselect=True, | |
allow_custom_value=True, | |
max_choices=2, | |
label="Background Events", | |
show_label=True, | |
container=True | |
) | |
with gr.Row(): | |
prompt4 = gr.Dropdown( | |
multiselect=True, | |
allow_custom_value=True, | |
max_choices=5, | |
label="Forbidden Elements/Events", | |
show_label=True, | |
container=True | |
) | |
with gr.Row(): | |
run_button = gr.Button("Run") | |
result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath') | |
run_button.click( | |
fn = infer, | |
inputs = [prompt1,prompt2,prompt3,prompt4], | |
outputs = [result] | |
) | |
demo.queue().launch() |