Spaces:
Sleeping
Sleeping
| import os | |
| import re | |
| import spaces | |
| import random | |
| import string | |
| import torch | |
| import requests | |
| import gradio as gr | |
| import numpy as np | |
| from lxml.html import fromstring | |
| from transformers import pipeline | |
| from torch import multiprocessing as mp, nn | |
| #from torch.multiprocessing import Pool | |
| #from pathos.multiprocessing import ProcessPool as Pool | |
| from pathos.threading import ThreadPool as Pool | |
| from diffusers.pipelines.flux import FluxPipeline | |
| from diffusers.utils import export_to_gif, load_image | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file, save_file | |
| from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel | |
| import jax | |
| import jax.numpy as jnp | |
| import sys | |
| import warnings | |
| class Suppress: | |
| def write(self, msg): | |
| pass | |
| warnings.filterwarnings("ignore") | |
| sys.stderr = Suppress() | |
| last_motion=None | |
| fps=15 | |
| time=2 | |
| width=896 | |
| height=896 | |
| device = "cuda" | |
| dtype = torch.float16 | |
| result=[] | |
| step = 40 | |
| accu=7.5 | |
| #repo = "ByteDance/AnimateDiff-Lightning" | |
| #ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" | |
| #base = "emilianJR/epiCRealism" | |
| base = "SG161222/Realistic_Vision_V6.0_B1_noVAE" | |
| vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=dtype) | |
| #unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False) | |
| adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device) | |
| css=""" | |
| input, input::placeholder { | |
| text-align: center !important; | |
| } | |
| *, *::placeholder { | |
| font-family: Suez One !important; | |
| } | |
| h1,h2,h3,h4,h5,h6 { | |
| width: 100%; | |
| text-align: center; | |
| } | |
| footer { | |
| display: none !important; | |
| } | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 15cm; | |
| } | |
| .image-container { | |
| aspect-ratio: """+str(width)+"/"+str(height)+""" !important; | |
| } | |
| .dropdown-arrow { | |
| display: none !important; | |
| } | |
| *:has(>.btn) { | |
| display: flex; | |
| justify-content: space-evenly; | |
| align-items: center; | |
| } | |
| .btn { | |
| display: flex; | |
| } | |
| """ | |
| js=""" | |
| function custom(){ | |
| document.querySelector("div#prompt input").setAttribute("maxlength","38") | |
| document.querySelector("div#prompt2 input").setAttribute("maxlength","38") | |
| } | |
| """ | |
| def translate(text,lang): | |
| if text == None or lang == None: | |
| return "" | |
| text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip() | |
| lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip() | |
| if text == "" or lang == "": | |
| return "" | |
| if len(text) > 38: | |
| raise Exception("Translation Error: Too long text!") | |
| user_agents = [ | |
| 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
| 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
| 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
| 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', | |
| 'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' | |
| ] | |
| padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip() | |
| query_text = f'Please translate {padded_chars}, into {lang}' | |
| url = f'https://www.google.com/search?q={query_text}' | |
| resp = requests.get( | |
| url = url, | |
| headers = { | |
| 'User-Agent': random.choice(user_agents) | |
| } | |
| ) | |
| content = resp.content | |
| html = fromstring(content) | |
| translated = text | |
| try: | |
| src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip() | |
| trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip() | |
| src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip() | |
| trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip() | |
| if trgt_lang == lang: | |
| translated = trgt_text | |
| except: | |
| print(f'Translation Warning: Failed To Translate!') | |
| ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip() | |
| print(ret) | |
| return ret | |
| def generate_random_string(length): | |
| characters = string.ascii_letters + string.digits | |
| return ''.join(random.choice(characters) for _ in range(length)) | |
| def Piper(image,positive,negative,motion): | |
| global last_motion | |
| global ip_loaded | |
| if last_motion != motion: | |
| pipe.unload_lora_weights() | |
| if motion != "": | |
| pipe.load_lora_weights(motion, adapter_name="motion") | |
| pipe.fuse_lora() | |
| pipe.set_adapters(["motion"], [0.7]) | |
| last_motion = motion | |
| pipe.to(device,dtype) | |
| if negative=="": | |
| return pipe( | |
| prompt=positive, | |
| height=height, | |
| width=width, | |
| ip_adapter_image=image.convert("RGB").resize((width,height)), | |
| num_inference_steps=step, | |
| guidance_scale=accu, | |
| num_frames=(fps*time) | |
| ) | |
| return pipe( | |
| prompt=positive, | |
| negative_prompt=negative, | |
| height=height, | |
| width=width, | |
| ip_adapter_image=image.convert("RGB").resize((width,height)), | |
| num_inference_steps=step, | |
| guidance_scale=accu, | |
| num_frames=(fps*time) | |
| ) | |
| def infer(pm): | |
| print("infer: started") | |
| p1 = pm["p"] | |
| name = generate_random_string(12)+".png" | |
| neg = pm["n"] | |
| _do = ['beautiful', 'playful', 'photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable coloring', 'rough texture', 'best quality', 'focused'] | |
| if p1 != "": | |
| _do.append(f'dynamic {p1} movement') | |
| posi = " ".join(_do) | |
| if pm["i"] == None: | |
| return None | |
| out = Piper(pm["i"],posi,neg,pm["m"]) | |
| export_to_gif(out.frames[0],name,fps=fps) | |
| return name | |
| def run(i,m,p1,p2,*result): | |
| p1_en = translate(p1,"english") | |
| p2_en = translate(p2,"english") | |
| pm = {"p":p1_en,"n":p2_en,"m":m,"i":i} | |
| ln = len(result) | |
| print("images: "+str(ln)) | |
| rng = list(range(ln)) | |
| arr = [pm for _ in rng] | |
| pool = Pool(ln) | |
| out = list(pool.imap(infer,arr)) | |
| pool.close() | |
| pool.join() | |
| pool.clear() | |
| return out | |
| pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device) | |
| pipe.scheduler = DDIMScheduler( | |
| clip_sample=False, | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="linear", | |
| timestep_spacing="trailing", | |
| steps_offset=1 | |
| ) | |
| #pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) | |
| pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") | |
| pipe.enable_vae_slicing() | |
| pipe.enable_free_init(method="butterworth", use_fast_sampling=True) | |
| mp.set_start_method("spawn", force=True) | |
| with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # MULTI-LANGUAGE IMAGE GENERATOR | |
| """) | |
| with gr.Row(): | |
| img = gr.Image(label="STATIC PHOTO",show_label=True,container=True,type="pil") | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| elem_id="prompt", | |
| placeholder="CONTENT MOVEMENT", | |
| container=False, | |
| max_lines=1 | |
| ) | |
| with gr.Row(): | |
| prompt2 = gr.Textbox( | |
| elem_id="prompt2", | |
| placeholder="CONTENT EXCLUSION", | |
| container=False, | |
| max_lines=1 | |
| ) | |
| with gr.Row(): | |
| motion = gr.Dropdown( | |
| label='CAMERA MOVEMENT', | |
| show_label=True, | |
| container=True, | |
| choices=[ | |
| ("(None)", ""), | |
| ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"), | |
| ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"), | |
| ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"), | |
| ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"), | |
| ("Pan left", "guoyww/animatediff-motion-lora-pan-left"), | |
| ("Pan right", "guoyww/animatediff-motion-lora-pan-right"), | |
| ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"), | |
| ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"), | |
| ], | |
| value="", | |
| interactive=True | |
| ) | |
| with gr.Row(): | |
| run_button = gr.Button("START",elem_classes="btn",scale=0) | |
| with gr.Row(): | |
| result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) | |
| result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit, prompt2.submit], | |
| fn=run,inputs=[img,motion,prompt,prompt2,*result],outputs=result | |
| ) | |
| demo.queue().launch() |