Spaces:
Running
Running
commit
Browse files- app.py +456 -34
- requirements.txt +4 -2
app.py
CHANGED
@@ -14,11 +14,14 @@ import warnings
|
|
14 |
import time
|
15 |
import asyncio
|
16 |
import math
|
|
|
17 |
from functools import partial
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
import spaces
|
|
|
|
|
22 |
import torch
|
23 |
import gradio as gr
|
24 |
from lxml.html import fromstring
|
@@ -27,6 +30,396 @@ from safetensors.torch import load_file, save_file
|
|
27 |
from diffusers import FluxPipeline
|
28 |
from PIL import Image, ImageDraw, ImageFont
|
29 |
from transformers import PegasusForConditionalGeneration, PegasusTokenizerFast
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# logging
|
32 |
|
@@ -41,19 +434,14 @@ root.addHandler(handler)
|
|
41 |
|
42 |
# constant data
|
43 |
|
44 |
-
if torch.cuda.is_available():
|
45 |
-
device = "cuda"
|
46 |
-
else:
|
47 |
-
device = "cpu"
|
48 |
-
|
49 |
base = "black-forest-labs/FLUX.1-schnell"
|
50 |
pegasus_name = "google/pegasus-xsum"
|
51 |
|
52 |
# precision data
|
53 |
|
54 |
seq=512
|
55 |
-
width=
|
56 |
-
height=
|
57 |
image_steps=8
|
58 |
img_accu=0
|
59 |
|
@@ -123,7 +511,44 @@ image_pipe.enable_model_cpu_offload()
|
|
123 |
|
124 |
# functionality
|
125 |
|
126 |
-
@spaces.GPU(duration=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
def summarize_text(
|
128 |
text, max_length=30, num_beams=16, early_stopping=True,
|
129 |
pegasus_tokenizer = PegasusTokenizerFast.from_pretrained("google/pegasus-xsum"),
|
@@ -140,7 +565,7 @@ def generate_random_string(length):
|
|
140 |
characters = str(ascii_letters + digits)
|
141 |
return ''.join(random.choice(characters) for _ in range(length))
|
142 |
|
143 |
-
@spaces.GPU(duration=
|
144 |
def pipe_generate(p1,p2):
|
145 |
return image_pipe(
|
146 |
prompt=p1,
|
@@ -162,8 +587,8 @@ def handle_generate(artist,song,genre,lyrics):
|
|
162 |
pos_genre = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).upper().strip()
|
163 |
pos_lyrics = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", lyrics)).lower().strip()
|
164 |
pos_lyrics_sum = summarize_text(pos_lyrics)
|
165 |
-
neg = f"Textual Labeled Distorted Discontinuous Ugly Blurry"
|
166 |
-
pos = f'Realistic
|
167 |
|
168 |
print(f"""
|
169 |
Positive: {pos}
|
@@ -176,26 +601,28 @@ def handle_generate(artist,song,genre,lyrics):
|
|
176 |
draw = ImageDraw.Draw(img)
|
177 |
|
178 |
rows = 1
|
179 |
-
|
180 |
|
181 |
textheight=min(math.ceil( width / 10 ), math.ceil( height / 5 ))
|
182 |
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
|
183 |
textwidth = draw.textlength(pos_song,font)
|
184 |
x = math.ceil((width - textwidth) / 2)
|
185 |
-
y =
|
186 |
-
y = y - math.ceil(y /
|
187 |
-
draw.text((x, y), pos_song, (255,255,255), font=font)
|
188 |
|
189 |
textheight=min(math.ceil( width / 12 ), math.ceil( height / 6 ))
|
190 |
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
|
191 |
textwidth = draw.textlength(pos_artist,font)
|
192 |
x = math.ceil((width - textwidth) / 2)
|
193 |
-
y =
|
194 |
-
y = y + math.ceil(y /
|
195 |
-
draw.text((x, y), pos_artist, (
|
|
|
|
|
196 |
|
197 |
name = generate_random_string(12) + ".png"
|
198 |
-
|
199 |
return name
|
200 |
|
201 |
# entry
|
@@ -205,36 +632,33 @@ if __name__ == "__main__":
|
|
205 |
gr.Markdown(f"""
|
206 |
# Song Cover Image Generator
|
207 |
""")
|
208 |
-
with gr.
|
209 |
-
with gr.
|
210 |
artist = gr.Textbox(
|
211 |
placeholder="Artist name",
|
212 |
container=False,
|
213 |
max_lines=1
|
214 |
)
|
215 |
-
with gr.Column():
|
216 |
song = gr.Textbox(
|
217 |
placeholder="Song name",
|
218 |
container=False,
|
219 |
max_lines=1
|
220 |
)
|
221 |
-
|
222 |
-
genre = gr.Textbox(
|
223 |
placeholder="Genre",
|
224 |
container=False,
|
225 |
max_lines=1
|
226 |
-
|
227 |
-
with gr.Row():
|
228 |
lyrics = gr.Textbox(
|
229 |
placeholder="Lyrics (English)",
|
230 |
container=False,
|
231 |
max_lines=1
|
232 |
)
|
233 |
-
with gr.
|
234 |
-
run = gr.Button("Generate",elem_classes="btn")
|
235 |
-
with gr.Row():
|
236 |
cover = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
|
237 |
|
|
|
|
|
238 |
run.click(
|
239 |
fn=handle_generate,
|
240 |
inputs=[artist,song,genre,lyrics],
|
@@ -242,5 +666,3 @@ if __name__ == "__main__":
|
|
242 |
)
|
243 |
|
244 |
demo.queue().launch()
|
245 |
-
|
246 |
-
# end
|
|
|
14 |
import time
|
15 |
import asyncio
|
16 |
import math
|
17 |
+
from pathlib import Path
|
18 |
from functools import partial
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Any
|
21 |
+
import pillow_heif
|
22 |
import spaces
|
23 |
+
import numpy as np
|
24 |
+
import numpy.typing as npt
|
25 |
import torch
|
26 |
import gradio as gr
|
27 |
from lxml.html import fromstring
|
|
|
30 |
from diffusers import FluxPipeline
|
31 |
from PIL import Image, ImageDraw, ImageFont
|
32 |
from transformers import PegasusForConditionalGeneration, PegasusTokenizerFast
|
33 |
+
from refiners.fluxion.utils import manual_seed
|
34 |
+
from refiners.foundationals.latent_diffusion import Solver, solvers
|
35 |
+
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
|
36 |
+
MultiUpscaler,
|
37 |
+
UpscalerCheckpoints,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
Tile = tuple[int, int, Image.Image]
|
42 |
+
Tiles = list[tuple[int, int, list[Tile]]]
|
43 |
+
|
44 |
+
def conv_block(in_nc: int, out_nc: int) -> nn.Sequential:
|
45 |
+
return nn.Sequential(
|
46 |
+
nn.Conv2d(in_nc, out_nc, kernel_size=3, padding=1),
|
47 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
class ResidualDenseBlock_5C(nn.Module):
|
52 |
+
"""
|
53 |
+
Residual Dense Block
|
54 |
+
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
|
55 |
+
Modified options that can be used:
|
56 |
+
- "Partial Convolution based Padding" arXiv:1811.11718
|
57 |
+
- "Spectral normalization" arXiv:1802.05957
|
58 |
+
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
|
59 |
+
{Rakotonirina} and A. {Rasoanaivo}
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(self, nf: int = 64, gc: int = 32) -> None:
|
63 |
+
super().__init__() # type: ignore[reportUnknownMemberType]
|
64 |
+
|
65 |
+
self.conv1 = conv_block(nf, gc)
|
66 |
+
self.conv2 = conv_block(nf + gc, gc)
|
67 |
+
self.conv3 = conv_block(nf + 2 * gc, gc)
|
68 |
+
self.conv4 = conv_block(nf + 3 * gc, gc)
|
69 |
+
# Wrapped in Sequential because of key in state dict.
|
70 |
+
self.conv5 = nn.Sequential(nn.Conv2d(nf + 4 * gc, nf, kernel_size=3, padding=1))
|
71 |
+
|
72 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
73 |
+
x1 = self.conv1(x)
|
74 |
+
x2 = self.conv2(torch.cat((x, x1), 1))
|
75 |
+
x3 = self.conv3(torch.cat((x, x1, x2), 1))
|
76 |
+
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
|
77 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
78 |
+
return x5 * 0.2 + x
|
79 |
+
|
80 |
+
|
81 |
+
class RRDB(nn.Module):
|
82 |
+
"""
|
83 |
+
Residual in Residual Dense Block
|
84 |
+
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(self, nf: int) -> None:
|
88 |
+
super().__init__() # type: ignore[reportUnknownMemberType]
|
89 |
+
self.RDB1 = ResidualDenseBlock_5C(nf)
|
90 |
+
self.RDB2 = ResidualDenseBlock_5C(nf)
|
91 |
+
self.RDB3 = ResidualDenseBlock_5C(nf)
|
92 |
+
|
93 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
94 |
+
out = self.RDB1(x)
|
95 |
+
out = self.RDB2(out)
|
96 |
+
out = self.RDB3(out)
|
97 |
+
return out * 0.2 + x
|
98 |
+
|
99 |
+
|
100 |
+
class Upsample2x(nn.Module):
|
101 |
+
"""Upsample 2x."""
|
102 |
+
|
103 |
+
def __init__(self) -> None:
|
104 |
+
super().__init__() # type: ignore[reportUnknownMemberType]
|
105 |
+
|
106 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
107 |
+
return nn.functional.interpolate(x, scale_factor=2.0) # type: ignore
|
108 |
+
|
109 |
+
|
110 |
+
class ShortcutBlock(nn.Module):
|
111 |
+
"""Elementwise sum the output of a submodule to its input"""
|
112 |
+
|
113 |
+
def __init__(self, submodule: nn.Module) -> None:
|
114 |
+
super().__init__() # type: ignore[reportUnknownMemberType]
|
115 |
+
self.sub = submodule
|
116 |
+
|
117 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
118 |
+
return x + self.sub(x)
|
119 |
+
|
120 |
+
|
121 |
+
class RRDBNet(nn.Module):
|
122 |
+
def __init__(self, in_nc: int, out_nc: int, nf: int, nb: int) -> None:
|
123 |
+
super().__init__() # type: ignore[reportUnknownMemberType]
|
124 |
+
assert in_nc % 4 != 0 # in_nc is 3
|
125 |
+
|
126 |
+
self.model = nn.Sequential(
|
127 |
+
nn.Conv2d(in_nc, nf, kernel_size=3, padding=1),
|
128 |
+
ShortcutBlock(
|
129 |
+
nn.Sequential(
|
130 |
+
*(RRDB(nf) for _ in range(nb)),
|
131 |
+
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
132 |
+
)
|
133 |
+
),
|
134 |
+
Upsample2x(),
|
135 |
+
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
136 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
137 |
+
Upsample2x(),
|
138 |
+
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
139 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
140 |
+
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
141 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
142 |
+
nn.Conv2d(nf, out_nc, kernel_size=3, padding=1),
|
143 |
+
)
|
144 |
+
|
145 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
146 |
+
return self.model(x)
|
147 |
+
|
148 |
+
|
149 |
+
def infer_params(state_dict: dict[str, torch.Tensor]) -> tuple[int, int, int, int, int]:
|
150 |
+
# this code is adapted from https://github.com/victorca25/iNNfer
|
151 |
+
scale2x = 0
|
152 |
+
scalemin = 6
|
153 |
+
n_uplayer = 0
|
154 |
+
out_nc = 0
|
155 |
+
nb = 0
|
156 |
+
|
157 |
+
for block in list(state_dict):
|
158 |
+
parts = block.split(".")
|
159 |
+
n_parts = len(parts)
|
160 |
+
if n_parts == 5 and parts[2] == "sub":
|
161 |
+
nb = int(parts[3])
|
162 |
+
elif n_parts == 3:
|
163 |
+
part_num = int(parts[1])
|
164 |
+
if part_num > scalemin and parts[0] == "model" and parts[2] == "weight":
|
165 |
+
scale2x += 1
|
166 |
+
if part_num > n_uplayer:
|
167 |
+
n_uplayer = part_num
|
168 |
+
out_nc = state_dict[block].shape[0]
|
169 |
+
assert "conv1x1" not in block # no ESRGANPlus
|
170 |
+
|
171 |
+
nf = state_dict["model.0.weight"].shape[0]
|
172 |
+
in_nc = state_dict["model.0.weight"].shape[1]
|
173 |
+
scale = 2**scale2x
|
174 |
+
|
175 |
+
assert out_nc > 0
|
176 |
+
assert nb > 0
|
177 |
+
|
178 |
+
return in_nc, out_nc, nf, nb, scale # 3, 3, 64, 23, 4
|
179 |
+
|
180 |
+
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64
|
181 |
+
class Grid(NamedTuple):
|
182 |
+
tiles: Tiles
|
183 |
+
tile_w: int
|
184 |
+
tile_h: int
|
185 |
+
image_w: int
|
186 |
+
image_h: int
|
187 |
+
overlap: int
|
188 |
+
|
189 |
+
|
190 |
+
# adapted from https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67
|
191 |
+
def split_grid(image: Image.Image, tile_w: int = 512, tile_h: int = 512, overlap: int = 64) -> Grid:
|
192 |
+
w = image.width
|
193 |
+
h = image.height
|
194 |
+
|
195 |
+
non_overlap_width = tile_w - overlap
|
196 |
+
non_overlap_height = tile_h - overlap
|
197 |
+
|
198 |
+
cols = max(1, math.ceil((w - overlap) / non_overlap_width))
|
199 |
+
rows = max(1, math.ceil((h - overlap) / non_overlap_height))
|
200 |
+
|
201 |
+
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
|
202 |
+
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
|
203 |
+
|
204 |
+
grid = Grid([], tile_w, tile_h, w, h, overlap)
|
205 |
+
for row in range(rows):
|
206 |
+
row_images: list[Tile] = []
|
207 |
+
y1 = max(min(int(row * dy), h - tile_h), 0)
|
208 |
+
y2 = min(y1 + tile_h, h)
|
209 |
+
for col in range(cols):
|
210 |
+
x1 = max(min(int(col * dx), w - tile_w), 0)
|
211 |
+
x2 = min(x1 + tile_w, w)
|
212 |
+
tile = image.crop((x1, y1, x2, y2))
|
213 |
+
row_images.append((x1, tile_w, tile))
|
214 |
+
grid.tiles.append((y1, tile_h, row_images))
|
215 |
+
|
216 |
+
return grid
|
217 |
+
|
218 |
+
|
219 |
+
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104
|
220 |
+
def combine_grid(grid: Grid):
|
221 |
+
def make_mask_image(r: npt.NDArray[np.float32]) -> Image.Image:
|
222 |
+
r = r * 255 / grid.overlap
|
223 |
+
return Image.fromarray(r.astype(np.uint8), "L")
|
224 |
+
|
225 |
+
mask_w = make_mask_image(
|
226 |
+
np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)
|
227 |
+
)
|
228 |
+
mask_h = make_mask_image(
|
229 |
+
np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)
|
230 |
+
)
|
231 |
+
|
232 |
+
combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
|
233 |
+
for y, h, row in grid.tiles:
|
234 |
+
combined_row = Image.new("RGB", (grid.image_w, h))
|
235 |
+
for x, w, tile in row:
|
236 |
+
if x == 0:
|
237 |
+
combined_row.paste(tile, (0, 0))
|
238 |
+
continue
|
239 |
+
|
240 |
+
combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w)
|
241 |
+
combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0))
|
242 |
+
|
243 |
+
if y == 0:
|
244 |
+
combined_image.paste(combined_row, (0, 0))
|
245 |
+
continue
|
246 |
+
|
247 |
+
combined_image.paste(
|
248 |
+
combined_row.crop((0, 0, combined_row.width, grid.overlap)),
|
249 |
+
(0, y),
|
250 |
+
mask=mask_h,
|
251 |
+
)
|
252 |
+
combined_image.paste(
|
253 |
+
combined_row.crop((0, grid.overlap, combined_row.width, h)),
|
254 |
+
(0, y + grid.overlap),
|
255 |
+
)
|
256 |
+
|
257 |
+
return combined_image
|
258 |
+
|
259 |
+
|
260 |
+
class UpscalerESRGAN:
|
261 |
+
def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype):
|
262 |
+
self.model_path = model_path
|
263 |
+
self.device = device
|
264 |
+
self.model = self.load_model(model_path)
|
265 |
+
self.to(device, dtype)
|
266 |
+
|
267 |
+
def __call__(self, img: Image.Image) -> Image.Image:
|
268 |
+
return self.upscale_without_tiling(img)
|
269 |
+
|
270 |
+
def to(self, device: torch.device, dtype: torch.dtype):
|
271 |
+
self.device = device
|
272 |
+
self.dtype = dtype
|
273 |
+
self.model.to(device=device, dtype=dtype)
|
274 |
+
|
275 |
+
def load_model(self, path: Path) -> RRDBNet:
|
276 |
+
filename = path
|
277 |
+
state_dict: dict[str, torch.Tensor] = torch.load(filename, weights_only=True, map_location=self.device) # type: ignore
|
278 |
+
in_nc, out_nc, nf, nb, upscale = infer_params(state_dict)
|
279 |
+
assert upscale == 4, "Only 4x upscaling is supported"
|
280 |
+
model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb)
|
281 |
+
model.load_state_dict(state_dict)
|
282 |
+
model.eval()
|
283 |
+
|
284 |
+
return model
|
285 |
+
|
286 |
+
def upscale_without_tiling(self, img: Image.Image) -> Image.Image:
|
287 |
+
img_np = np.array(img)
|
288 |
+
img_np = img_np[:, :, ::-1]
|
289 |
+
img_np = np.ascontiguousarray(np.transpose(img_np, (2, 0, 1))) / 255
|
290 |
+
img_t = torch.from_numpy(img_np).float() # type: ignore
|
291 |
+
img_t = img_t.unsqueeze(0).to(device=self.device, dtype=self.dtype)
|
292 |
+
with torch.no_grad():
|
293 |
+
output = self.model(img_t)
|
294 |
+
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
295 |
+
output = 255.0 * np.moveaxis(output, 0, 2)
|
296 |
+
output = output.astype(np.uint8)
|
297 |
+
output = output[:, :, ::-1]
|
298 |
+
return Image.fromarray(output, "RGB")
|
299 |
+
|
300 |
+
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/esrgan_model.py#L208
|
301 |
+
def upscale_with_tiling(self, img: Image.Image) -> Image.Image:
|
302 |
+
img = img.convert("RGB")
|
303 |
+
grid = split_grid(img)
|
304 |
+
newtiles: Tiles = []
|
305 |
+
scale_factor: int = 1
|
306 |
+
|
307 |
+
for y, h, row in grid.tiles:
|
308 |
+
newrow: list[Tile] = []
|
309 |
+
for tiledata in row:
|
310 |
+
x, w, tile = tiledata
|
311 |
+
output = self.upscale_without_tiling(tile)
|
312 |
+
scale_factor = output.width // tile.width
|
313 |
+
newrow.append((x * scale_factor, w * scale_factor, output))
|
314 |
+
newtiles.append((y * scale_factor, h * scale_factor, newrow))
|
315 |
+
|
316 |
+
newgrid = Grid(
|
317 |
+
newtiles,
|
318 |
+
grid.tile_w * scale_factor,
|
319 |
+
grid.tile_h * scale_factor,
|
320 |
+
grid.image_w * scale_factor,
|
321 |
+
grid.image_h * scale_factor,
|
322 |
+
grid.overlap * scale_factor,
|
323 |
+
)
|
324 |
+
output = combine_grid(newgrid)
|
325 |
+
return output
|
326 |
+
|
327 |
+
@dataclass(kw_only=True)
|
328 |
+
class ESRGANUpscalerCheckpoints(UpscalerCheckpoints):
|
329 |
+
esrgan: Path
|
330 |
+
|
331 |
+
class ESRGANUpscaler(MultiUpscaler):
|
332 |
+
def __init__(
|
333 |
+
self,
|
334 |
+
checkpoints: ESRGANUpscalerCheckpoints,
|
335 |
+
device: torch.device,
|
336 |
+
dtype: torch.dtype,
|
337 |
+
) -> None:
|
338 |
+
super().__init__(checkpoints=checkpoints, device=device, dtype=dtype)
|
339 |
+
self.esrgan = UpscalerESRGAN(checkpoints.esrgan, device=self.device, dtype=self.dtype)
|
340 |
+
|
341 |
+
def to(self, device: torch.device, dtype: torch.dtype):
|
342 |
+
self.esrgan.to(device=device, dtype=dtype)
|
343 |
+
self.sd = self.sd.to(device=device, dtype=dtype)
|
344 |
+
self.device = device
|
345 |
+
self.dtype = dtype
|
346 |
+
|
347 |
+
def pre_upscale(self, image: Image.Image, upscale_factor: float, **_: Any) -> Image.Image:
|
348 |
+
image = self.esrgan.upscale_with_tiling(image)
|
349 |
+
return super().pre_upscale(image=image, upscale_factor=upscale_factor / 4)
|
350 |
+
|
351 |
+
pillow_heif.register_heif_opener()
|
352 |
+
pillow_heif.register_avif_opener()
|
353 |
+
|
354 |
+
CHECKPOINTS = ESRGANUpscalerCheckpoints(
|
355 |
+
unet=Path(
|
356 |
+
hf_hub_download(
|
357 |
+
repo_id="refiners/juggernaut.reborn.sd1_5.unet",
|
358 |
+
filename="model.safetensors",
|
359 |
+
revision="347d14c3c782c4959cc4d1bb1e336d19f7dda4d2",
|
360 |
+
)
|
361 |
+
),
|
362 |
+
clip_text_encoder=Path(
|
363 |
+
hf_hub_download(
|
364 |
+
repo_id="refiners/juggernaut.reborn.sd1_5.text_encoder",
|
365 |
+
filename="model.safetensors",
|
366 |
+
revision="744ad6a5c0437ec02ad826df9f6ede102bb27481",
|
367 |
+
)
|
368 |
+
),
|
369 |
+
lda=Path(
|
370 |
+
hf_hub_download(
|
371 |
+
repo_id="refiners/juggernaut.reborn.sd1_5.autoencoder",
|
372 |
+
filename="model.safetensors",
|
373 |
+
revision="3c1aae3fc3e03e4a2b7e0fa42b62ebb64f1a4c19",
|
374 |
+
)
|
375 |
+
),
|
376 |
+
controlnet_tile=Path(
|
377 |
+
hf_hub_download(
|
378 |
+
repo_id="refiners/controlnet.sd1_5.tile",
|
379 |
+
filename="model.safetensors",
|
380 |
+
revision="48ced6ff8bfa873a8976fa467c3629a240643387",
|
381 |
+
)
|
382 |
+
),
|
383 |
+
esrgan=Path(
|
384 |
+
hf_hub_download(
|
385 |
+
repo_id="philz1337x/upscaler",
|
386 |
+
filename="4x-UltraSharp.pth",
|
387 |
+
revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
|
388 |
+
)
|
389 |
+
),
|
390 |
+
negative_embedding=Path(
|
391 |
+
hf_hub_download(
|
392 |
+
repo_id="philz1337x/embeddings",
|
393 |
+
filename="JuggernautNegative-neg.pt",
|
394 |
+
revision="203caa7e9cc2bc225031a4021f6ab1ded283454a",
|
395 |
+
)
|
396 |
+
),
|
397 |
+
negative_embedding_key="string_to_param.*",
|
398 |
+
loras={
|
399 |
+
"more_details": Path(
|
400 |
+
hf_hub_download(
|
401 |
+
repo_id="philz1337x/loras",
|
402 |
+
filename="more_details.safetensors",
|
403 |
+
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
|
404 |
+
)
|
405 |
+
),
|
406 |
+
"sdxl_render": Path(
|
407 |
+
hf_hub_download(
|
408 |
+
repo_id="philz1337x/loras",
|
409 |
+
filename="SDXLrender_v2.0.safetensors",
|
410 |
+
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
|
411 |
+
)
|
412 |
+
)
|
413 |
+
}
|
414 |
+
)
|
415 |
+
|
416 |
+
# initialize the enhancer, on the cpu
|
417 |
+
DEVICE_CPU = torch.device("cpu")
|
418 |
+
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
419 |
+
enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=DEVICE_CPU, dtype=DTYPE)
|
420 |
+
|
421 |
+
device = DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
422 |
+
enhancer.to(device=DEVICE, dtype=DTYPE)
|
423 |
|
424 |
# logging
|
425 |
|
|
|
434 |
|
435 |
# constant data
|
436 |
|
|
|
|
|
|
|
|
|
|
|
437 |
base = "black-forest-labs/FLUX.1-schnell"
|
438 |
pegasus_name = "google/pegasus-xsum"
|
439 |
|
440 |
# precision data
|
441 |
|
442 |
seq=512
|
443 |
+
width=1024
|
444 |
+
height=1024
|
445 |
image_steps=8
|
446 |
img_accu=0
|
447 |
|
|
|
511 |
|
512 |
# functionality
|
513 |
|
514 |
+
@spaces.GPU(duration=180)
|
515 |
+
def upscaler(
|
516 |
+
input_image: Image.Image,
|
517 |
+
prompt: str = "masterpiece, best quality, highres",
|
518 |
+
negative_prompt: str = "worst quality, low quality, normal quality",
|
519 |
+
seed: int = 42,
|
520 |
+
upscale_factor: int = 8,
|
521 |
+
controlnet_scale: float = 0.6,
|
522 |
+
controlnet_decay: float = 1.0,
|
523 |
+
condition_scale: int = 6,
|
524 |
+
tile_width: int = 112,
|
525 |
+
tile_height: int = 144,
|
526 |
+
denoise_strength: float = 0.35,
|
527 |
+
num_inference_steps: int = 18,
|
528 |
+
solver: str = "DDIM",
|
529 |
+
) -> Image.Image:
|
530 |
+
manual_seed(seed)
|
531 |
+
|
532 |
+
solver_type: type[Solver] = getattr(solvers, solver)
|
533 |
+
|
534 |
+
enhanced_image = enhancer.upscale(
|
535 |
+
image=input_image,
|
536 |
+
prompt=prompt,
|
537 |
+
negative_prompt=negative_prompt,
|
538 |
+
upscale_factor=upscale_factor,
|
539 |
+
controlnet_scale=controlnet_scale,
|
540 |
+
controlnet_scale_decay=controlnet_decay,
|
541 |
+
condition_scale=condition_scale,
|
542 |
+
tile_size=(tile_height, tile_width),
|
543 |
+
denoise_strength=denoise_strength,
|
544 |
+
num_inference_steps=num_inference_steps,
|
545 |
+
loras_scale={"more_details": 0.5, "sdxl_render": 1.0},
|
546 |
+
solver_type=solver_type,
|
547 |
+
)
|
548 |
+
|
549 |
+
return enhanced_image
|
550 |
+
|
551 |
+
@spaces.GPU(duration=180)
|
552 |
def summarize_text(
|
553 |
text, max_length=30, num_beams=16, early_stopping=True,
|
554 |
pegasus_tokenizer = PegasusTokenizerFast.from_pretrained("google/pegasus-xsum"),
|
|
|
565 |
characters = str(ascii_letters + digits)
|
566 |
return ''.join(random.choice(characters) for _ in range(length))
|
567 |
|
568 |
+
@spaces.GPU(duration=180)
|
569 |
def pipe_generate(p1,p2):
|
570 |
return image_pipe(
|
571 |
prompt=p1,
|
|
|
587 |
pos_genre = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).upper().strip()
|
588 |
pos_lyrics = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", lyrics)).lower().strip()
|
589 |
pos_lyrics_sum = summarize_text(pos_lyrics)
|
590 |
+
neg = f"Textual Labeled Distorted Discontinuous Ugly Blurry Low-Quality Worst-Quality Low-Resolution Painted"
|
591 |
+
pos = f'Realistic Vivid Genuine Reasonable Detailed 4K { pos_genre } GENRE { pos_song }: "{ pos_lyrics_sum }"'
|
592 |
|
593 |
print(f"""
|
594 |
Positive: {pos}
|
|
|
601 |
draw = ImageDraw.Draw(img)
|
602 |
|
603 |
rows = 1
|
604 |
+
labels_distance = math.ceil(1 / 3)
|
605 |
|
606 |
textheight=min(math.ceil( width / 10 ), math.ceil( height / 5 ))
|
607 |
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
|
608 |
textwidth = draw.textlength(pos_song,font)
|
609 |
x = math.ceil((width - textwidth) / 2)
|
610 |
+
y = height - math.ceil(textheight * rows / 2)
|
611 |
+
y = y - math.ceil(y / labels_distance)
|
612 |
+
draw.text((x, y), pos_song, (255,255,255), font=font, spacing=2, stroke_width=4, stroke_fill=(0,0,0))
|
613 |
|
614 |
textheight=min(math.ceil( width / 12 ), math.ceil( height / 6 ))
|
615 |
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
|
616 |
textwidth = draw.textlength(pos_artist,font)
|
617 |
x = math.ceil((width - textwidth) / 2)
|
618 |
+
y = height - math.ceil(textheight * rows / 2)
|
619 |
+
y = y + math.ceil(y / labels_distance)
|
620 |
+
draw.text((x, y), pos_artist, (0,0,0), font=font, spacing=6, stroke_width=8, stroke_fill=(255,255,255))
|
621 |
+
|
622 |
+
enhanced_img = upscaler(img)
|
623 |
|
624 |
name = generate_random_string(12) + ".png"
|
625 |
+
enhanced_img.save(name)
|
626 |
return name
|
627 |
|
628 |
# entry
|
|
|
632 |
gr.Markdown(f"""
|
633 |
# Song Cover Image Generator
|
634 |
""")
|
635 |
+
with gr.Column():
|
636 |
+
with gr.Row():
|
637 |
artist = gr.Textbox(
|
638 |
placeholder="Artist name",
|
639 |
container=False,
|
640 |
max_lines=1
|
641 |
)
|
|
|
642 |
song = gr.Textbox(
|
643 |
placeholder="Song name",
|
644 |
container=False,
|
645 |
max_lines=1
|
646 |
)
|
647 |
+
genre = gr.Textbox(
|
|
|
648 |
placeholder="Genre",
|
649 |
container=False,
|
650 |
max_lines=1
|
651 |
+
)
|
|
|
652 |
lyrics = gr.Textbox(
|
653 |
placeholder="Lyrics (English)",
|
654 |
container=False,
|
655 |
max_lines=1
|
656 |
)
|
657 |
+
with gr.Column():
|
|
|
|
|
658 |
cover = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
|
659 |
|
660 |
+
run = gr.Button("Generate",elem_classes="btn")
|
661 |
+
|
662 |
run.click(
|
663 |
fn=handle_generate,
|
664 |
inputs=[artist,song,genre,lyrics],
|
|
|
666 |
)
|
667 |
|
668 |
demo.queue().launch()
|
|
|
|
requirements.txt
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
lxml
|
2 |
-
pillow
|
|
|
|
|
3 |
opencv-python
|
4 |
gradio==5.12.0
|
5 |
accelerate
|
6 |
safetensors
|
7 |
huggingface-hub
|
8 |
-
numpy
|
9 |
torch
|
10 |
torchaudio
|
11 |
torchvision
|
|
|
1 |
lxml
|
2 |
+
pillow>=10.4.0
|
3 |
+
git+https://github.com/finegrain-ai/refiners
|
4 |
+
pillow-heif>=0.18.0
|
5 |
opencv-python
|
6 |
gradio==5.12.0
|
7 |
accelerate
|
8 |
safetensors
|
9 |
huggingface-hub
|
10 |
+
numpy<2.0.0
|
11 |
torch
|
12 |
torchaudio
|
13 |
torchvision
|