Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,1401 +1,141 @@
|
|
1 |
-
import requests
|
2 |
-
from bs4 import BeautifulSoup
|
3 |
-
from abc import ABC, abstractmethod
|
4 |
-
from pathlib import Path
|
5 |
-
from langdetect import detect as get_language
|
6 |
-
from typing import Any, Dict, List, Optional, Union
|
7 |
-
from collections import namedtuple
|
8 |
-
from inspect import signature
|
9 |
-
import os
|
10 |
-
import subprocess
|
11 |
-
import logging
|
12 |
-
import re
|
13 |
-
import random
|
14 |
-
from string import ascii_letters, digits, punctuation
|
15 |
-
import requests
|
16 |
-
import sys
|
17 |
-
import warnings
|
18 |
-
import time
|
19 |
-
import math
|
20 |
-
from pathlib import Path
|
21 |
-
from dataclasses import dataclass
|
22 |
-
from typing import Any
|
23 |
-
import pillow_heif
|
24 |
-
import spaces
|
25 |
-
import numpy as np
|
26 |
-
import numpy.typing as npt
|
27 |
-
import torch
|
28 |
-
from torch import nn
|
29 |
import gradio as gr
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
from
|
36 |
-
from refiners.fluxion.utils import manual_seed
|
37 |
-
from refiners.foundationals.latent_diffusion import Solver, solvers
|
38 |
-
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
|
39 |
-
MultiUpscaler,
|
40 |
-
UpscalerCheckpoints,
|
41 |
-
)
|
42 |
-
from datetime import datetime
|
43 |
-
|
44 |
-
model = T5ForConditionalGeneration.from_pretrained("t5-large")
|
45 |
-
tokenizer = T5Tokenizer.from_pretrained("t5-large")
|
46 |
-
|
47 |
-
def log(msg):
|
48 |
-
print(f'{datetime.now().time()} {msg}')
|
49 |
-
|
50 |
-
Tile = tuple[int, int, Image.Image]
|
51 |
-
Tiles = list[tuple[int, int, list[Tile]]]
|
52 |
-
|
53 |
-
def conv_block(in_nc: int, out_nc: int) -> nn.Sequential:
|
54 |
-
return nn.Sequential(
|
55 |
-
nn.Conv2d(in_nc, out_nc, kernel_size=3, padding=1),
|
56 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
57 |
-
)
|
58 |
-
|
59 |
-
class ResidualDenseBlock_5C(nn.Module):
|
60 |
-
"""
|
61 |
-
Residual Dense Block
|
62 |
-
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
|
63 |
-
Modified options that can be used:
|
64 |
-
- "Partial Convolution based Padding" arXiv:1811.11718
|
65 |
-
- "Spectral normalization" arXiv:1802.05957
|
66 |
-
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
|
67 |
-
{Rakotonirina} and A. {Rasoanaivo}
|
68 |
-
"""
|
69 |
|
70 |
-
|
71 |
-
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
self.conv3 = conv_block(nf + 2 * gc, gc)
|
76 |
-
self.conv4 = conv_block(nf + 3 * gc, gc)
|
77 |
-
# Wrapped in Sequential because of key in state dict.
|
78 |
-
self.conv5 = nn.Sequential(nn.Conv2d(nf + 4 * gc, nf, kernel_size=3, padding=1))
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
x2 = self.conv2(torch.cat((x, x1), 1))
|
83 |
-
x3 = self.conv3(torch.cat((x, x1, x2), 1))
|
84 |
-
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
|
85 |
-
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
86 |
-
return x5 * 0.2 + x
|
87 |
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
"""
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
93 |
"""
|
94 |
-
|
95 |
-
|
96 |
-
super().__init__() # type: ignore[reportUnknownMemberType]
|
97 |
-
self.RDB1 = ResidualDenseBlock_5C(nf)
|
98 |
-
self.RDB2 = ResidualDenseBlock_5C(nf)
|
99 |
-
self.RDB3 = ResidualDenseBlock_5C(nf)
|
100 |
-
|
101 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
102 |
-
out = self.RDB1(x)
|
103 |
-
out = self.RDB2(out)
|
104 |
-
out = self.RDB3(out)
|
105 |
-
return out * 0.2 + x
|
106 |
-
|
107 |
-
|
108 |
-
class Upsample2x(nn.Module):
|
109 |
-
"""Upsample 2x."""
|
110 |
-
|
111 |
-
def __init__(self) -> None:
|
112 |
-
super().__init__() # type: ignore[reportUnknownMemberType]
|
113 |
-
|
114 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
115 |
-
return nn.functional.interpolate(x, scale_factor=2.0) # type: ignore
|
116 |
-
|
117 |
-
|
118 |
-
class ShortcutBlock(nn.Module):
|
119 |
-
"""Elementwise sum the output of a submodule to its input"""
|
120 |
-
|
121 |
-
def __init__(self, submodule: nn.Module) -> None:
|
122 |
-
super().__init__() # type: ignore[reportUnknownMemberType]
|
123 |
-
self.sub = submodule
|
124 |
-
|
125 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
126 |
-
return x + self.sub(x)
|
127 |
-
|
128 |
-
|
129 |
-
class RRDBNet(nn.Module):
|
130 |
-
def __init__(self, in_nc: int, out_nc: int, nf: int, nb: int) -> None:
|
131 |
-
super().__init__() # type: ignore[reportUnknownMemberType]
|
132 |
-
assert in_nc % 4 != 0 # in_nc is 3
|
133 |
-
|
134 |
-
self.model = nn.Sequential(
|
135 |
-
nn.Conv2d(in_nc, nf, kernel_size=3, padding=1),
|
136 |
-
ShortcutBlock(
|
137 |
-
nn.Sequential(
|
138 |
-
*(RRDB(nf) for _ in range(nb)),
|
139 |
-
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
140 |
-
)
|
141 |
-
),
|
142 |
-
Upsample2x(),
|
143 |
-
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
144 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
145 |
-
Upsample2x(),
|
146 |
-
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
147 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
148 |
-
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
149 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
150 |
-
nn.Conv2d(nf, out_nc, kernel_size=3, padding=1),
|
151 |
-
)
|
152 |
-
|
153 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
154 |
-
return self.model(x)
|
155 |
-
|
156 |
-
|
157 |
-
def infer_params(state_dict: dict[str, torch.Tensor]) -> tuple[int, int, int, int, int]:
|
158 |
-
# this code is adapted from https://github.com/victorca25/iNNfer
|
159 |
-
scale2x = 0
|
160 |
-
scalemin = 6
|
161 |
-
n_uplayer = 0
|
162 |
-
out_nc = 0
|
163 |
-
nb = 0
|
164 |
-
|
165 |
-
for block in list(state_dict):
|
166 |
-
parts = block.split(".")
|
167 |
-
n_parts = len(parts)
|
168 |
-
if n_parts == 5 and parts[2] == "sub":
|
169 |
-
nb = int(parts[3])
|
170 |
-
elif n_parts == 3:
|
171 |
-
part_num = int(parts[1])
|
172 |
-
if part_num > scalemin and parts[0] == "model" and parts[2] == "weight":
|
173 |
-
scale2x += 1
|
174 |
-
if part_num > n_uplayer:
|
175 |
-
n_uplayer = part_num
|
176 |
-
out_nc = state_dict[block].shape[0]
|
177 |
-
assert "conv1x1" not in block # no ESRGANPlus
|
178 |
-
|
179 |
-
nf = state_dict["model.0.weight"].shape[0]
|
180 |
-
in_nc = state_dict["model.0.weight"].shape[1]
|
181 |
-
scale = 2**scale2x
|
182 |
-
|
183 |
-
assert out_nc > 0
|
184 |
-
assert nb > 0
|
185 |
-
|
186 |
-
return in_nc, out_nc, nf, nb, scale # 3, 3, 64, 23, 4
|
187 |
-
|
188 |
-
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64
|
189 |
-
Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"])
|
190 |
-
|
191 |
-
# adapted from https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67
|
192 |
-
def split_grid(image: Image.Image, tile_w: int = 512, tile_h: int = 512, overlap: int = 64) -> Grid:
|
193 |
-
w = image.width
|
194 |
-
h = image.height
|
195 |
-
|
196 |
-
non_overlap_width = tile_w - overlap
|
197 |
-
non_overlap_height = tile_h - overlap
|
198 |
-
|
199 |
-
cols = max(1, math.ceil((w - overlap) / non_overlap_width))
|
200 |
-
rows = max(1, math.ceil((h - overlap) / non_overlap_height))
|
201 |
-
|
202 |
-
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
|
203 |
-
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
|
204 |
-
|
205 |
-
grid = Grid([], tile_w, tile_h, w, h, overlap)
|
206 |
-
for row in range(rows):
|
207 |
-
row_images: list[Tile] = []
|
208 |
-
y1 = max(min(int(row * dy), h - tile_h), 0)
|
209 |
-
y2 = min(y1 + tile_h, h)
|
210 |
-
for col in range(cols):
|
211 |
-
x1 = max(min(int(col * dx), w - tile_w), 0)
|
212 |
-
x2 = min(x1 + tile_w, w)
|
213 |
-
tile = image.crop((x1, y1, x2, y2))
|
214 |
-
row_images.append((x1, tile_w, tile))
|
215 |
-
grid.tiles.append((y1, tile_h, row_images))
|
216 |
-
|
217 |
-
return grid
|
218 |
-
|
219 |
-
|
220 |
-
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104
|
221 |
-
def combine_grid(grid: Grid):
|
222 |
-
def make_mask_image(r: npt.NDArray[np.float32]) -> Image.Image:
|
223 |
-
r = r * 255 / grid.overlap
|
224 |
-
return Image.fromarray(r.astype(np.uint8), "L")
|
225 |
-
|
226 |
-
mask_w = make_mask_image(
|
227 |
-
np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)
|
228 |
-
)
|
229 |
-
mask_h = make_mask_image(
|
230 |
-
np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)
|
231 |
-
)
|
232 |
-
|
233 |
-
combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
|
234 |
-
for y, h, row in grid.tiles:
|
235 |
-
combined_row = Image.new("RGB", (grid.image_w, h))
|
236 |
-
for x, w, tile in row:
|
237 |
-
if x == 0:
|
238 |
-
combined_row.paste(tile, (0, 0))
|
239 |
-
continue
|
240 |
-
|
241 |
-
combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w)
|
242 |
-
combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0))
|
243 |
-
|
244 |
-
if y == 0:
|
245 |
-
combined_image.paste(combined_row, (0, 0))
|
246 |
-
continue
|
247 |
-
|
248 |
-
combined_image.paste(
|
249 |
-
combined_row.crop((0, 0, combined_row.width, grid.overlap)),
|
250 |
-
(0, y),
|
251 |
-
mask=mask_h,
|
252 |
-
)
|
253 |
-
combined_image.paste(
|
254 |
-
combined_row.crop((0, grid.overlap, combined_row.width, h)),
|
255 |
-
(0, y + grid.overlap),
|
256 |
-
)
|
257 |
-
|
258 |
-
return combined_image
|
259 |
-
|
260 |
-
|
261 |
-
class UpscalerESRGAN:
|
262 |
-
def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype):
|
263 |
-
self.model_path = model_path
|
264 |
-
self.device = device
|
265 |
-
self.model = self.load_model(model_path)
|
266 |
-
self.to(device, dtype)
|
267 |
-
|
268 |
-
def __call__(self, img: Image.Image) -> Image.Image:
|
269 |
-
return self.upscale_without_tiling(img)
|
270 |
-
|
271 |
-
def to(self, device: torch.device, dtype: torch.dtype):
|
272 |
-
self.device = device
|
273 |
-
self.dtype = dtype
|
274 |
-
self.model.to(device=device, dtype=dtype)
|
275 |
-
|
276 |
-
def load_model(self, path: Path) -> RRDBNet:
|
277 |
-
filename = path
|
278 |
-
state_dict: dict[str, torch.Tensor] = torch.load(filename, weights_only=True, map_location=self.device) # type: ignore
|
279 |
-
in_nc, out_nc, nf, nb, upscale = infer_params(state_dict)
|
280 |
-
assert upscale == 4, "Only 4x upscaling is supported"
|
281 |
-
model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb)
|
282 |
-
model.load_state_dict(state_dict)
|
283 |
-
model.eval()
|
284 |
-
|
285 |
-
return model
|
286 |
-
|
287 |
-
def upscale_without_tiling(self, img: Image.Image) -> Image.Image:
|
288 |
-
img_np = np.array(img)
|
289 |
-
img_np = img_np[:, :, ::-1]
|
290 |
-
img_np = np.ascontiguousarray(np.transpose(img_np, (2, 0, 1))) / 255
|
291 |
-
img_t = torch.from_numpy(img_np).float() # type: ignore
|
292 |
-
img_t = img_t.unsqueeze(0).to(device=self.device, dtype=self.dtype)
|
293 |
-
with torch.no_grad():
|
294 |
-
output = self.model(img_t)
|
295 |
-
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
296 |
-
output = 255.0 * np.moveaxis(output, 0, 2)
|
297 |
-
output = output.astype(np.uint8)
|
298 |
-
output = output[:, :, ::-1]
|
299 |
-
return Image.fromarray(output, "RGB")
|
300 |
-
|
301 |
-
def upscale_with_tiling(self, img: Image.Image) -> Image.Image:
|
302 |
-
img = img.convert("RGB")
|
303 |
-
grid = split_grid(img)
|
304 |
-
newtiles: Tiles = []
|
305 |
-
scale_factor: int = 1
|
306 |
-
|
307 |
-
for y, h, row in grid.tiles:
|
308 |
-
newrow: list[Tile] = []
|
309 |
-
for tiledata in row:
|
310 |
-
x, w, tile = tiledata
|
311 |
-
output = self.upscale_without_tiling(tile)
|
312 |
-
scale_factor = output.width // tile.width
|
313 |
-
newrow.append((x * scale_factor, w * scale_factor, output))
|
314 |
-
newtiles.append((y * scale_factor, h * scale_factor, newrow))
|
315 |
-
|
316 |
-
newgrid = Grid(
|
317 |
-
newtiles,
|
318 |
-
grid.tile_w * scale_factor,
|
319 |
-
grid.tile_h * scale_factor,
|
320 |
-
grid.image_w * scale_factor,
|
321 |
-
grid.image_h * scale_factor,
|
322 |
-
grid.overlap * scale_factor,
|
323 |
-
)
|
324 |
-
output = combine_grid(newgrid)
|
325 |
-
return output
|
326 |
-
|
327 |
-
@dataclass(kw_only=True)
|
328 |
-
class ESRGANUpscalerCheckpoints(UpscalerCheckpoints):
|
329 |
-
esrgan: Path
|
330 |
-
|
331 |
-
class ESRGANUpscaler(MultiUpscaler):
|
332 |
-
def __init__(
|
333 |
-
self,
|
334 |
-
checkpoints: ESRGANUpscalerCheckpoints,
|
335 |
-
device: torch.device,
|
336 |
-
dtype: torch.dtype,
|
337 |
-
) -> None:
|
338 |
-
super().__init__(checkpoints=checkpoints, device=device, dtype=dtype)
|
339 |
-
self.esrgan = UpscalerESRGAN(checkpoints.esrgan, device=self.device, dtype=self.dtype)
|
340 |
-
|
341 |
-
def to(self, device: torch.device, dtype: torch.dtype):
|
342 |
-
self.esrgan.to(device=device, dtype=dtype)
|
343 |
-
self.sd = self.sd.to(device=device, dtype=dtype)
|
344 |
-
self.device = device
|
345 |
-
self.dtype = dtype
|
346 |
-
|
347 |
-
def pre_upscale(self, image: Image.Image, upscale_factor: float, **_: Any) -> Image.Image:
|
348 |
-
image = self.esrgan.upscale_with_tiling(image)
|
349 |
-
return super().pre_upscale(image=image, upscale_factor=upscale_factor / 4)
|
350 |
-
|
351 |
-
pillow_heif.register_heif_opener()
|
352 |
-
pillow_heif.register_avif_opener()
|
353 |
-
|
354 |
-
CHECKPOINTS = ESRGANUpscalerCheckpoints(
|
355 |
-
unet=Path(
|
356 |
-
hf_hub_download(
|
357 |
-
repo_id="refiners/juggernaut.reborn.sd1_5.unet",
|
358 |
-
filename="model.safetensors",
|
359 |
-
revision="347d14c3c782c4959cc4d1bb1e336d19f7dda4d2",
|
360 |
-
)
|
361 |
-
),
|
362 |
-
clip_text_encoder=Path(
|
363 |
-
hf_hub_download(
|
364 |
-
repo_id="refiners/juggernaut.reborn.sd1_5.text_encoder",
|
365 |
-
filename="model.safetensors",
|
366 |
-
revision="744ad6a5c0437ec02ad826df9f6ede102bb27481",
|
367 |
-
)
|
368 |
-
),
|
369 |
-
lda=Path(
|
370 |
-
hf_hub_download(
|
371 |
-
repo_id="refiners/juggernaut.reborn.sd1_5.autoencoder",
|
372 |
-
filename="model.safetensors",
|
373 |
-
revision="3c1aae3fc3e03e4a2b7e0fa42b62ebb64f1a4c19",
|
374 |
-
)
|
375 |
-
),
|
376 |
-
controlnet_tile=Path(
|
377 |
-
hf_hub_download(
|
378 |
-
repo_id="refiners/controlnet.sd1_5.tile",
|
379 |
-
filename="model.safetensors",
|
380 |
-
revision="48ced6ff8bfa873a8976fa467c3629a240643387",
|
381 |
-
)
|
382 |
-
),
|
383 |
-
esrgan=Path(
|
384 |
-
hf_hub_download(
|
385 |
-
repo_id="philz1337x/upscaler",
|
386 |
-
filename="4x-UltraSharp.pth",
|
387 |
-
revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
|
388 |
-
)
|
389 |
-
),
|
390 |
-
negative_embedding=Path(
|
391 |
-
hf_hub_download(
|
392 |
-
repo_id="philz1337x/embeddings",
|
393 |
-
filename="JuggernautNegative-neg.pt",
|
394 |
-
revision="203caa7e9cc2bc225031a4021f6ab1ded283454a",
|
395 |
-
)
|
396 |
-
),
|
397 |
-
negative_embedding_key="string_to_param.*",
|
398 |
-
loras={
|
399 |
-
"more_details": Path(
|
400 |
-
hf_hub_download(
|
401 |
-
repo_id="philz1337x/loras",
|
402 |
-
filename="more_details.safetensors",
|
403 |
-
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
|
404 |
-
)
|
405 |
-
),
|
406 |
-
"sdxl_render": Path(
|
407 |
-
hf_hub_download(
|
408 |
-
repo_id="philz1337x/loras",
|
409 |
-
filename="SDXLrender_v2.0.safetensors",
|
410 |
-
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
|
411 |
-
)
|
412 |
-
)
|
413 |
-
}
|
414 |
-
)
|
415 |
-
|
416 |
-
device = DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
417 |
-
DTYPE = dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
418 |
-
|
419 |
-
enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=device, dtype=DTYPE)
|
420 |
-
|
421 |
-
# logging
|
422 |
-
|
423 |
-
warnings.filterwarnings("ignore")
|
424 |
-
root = logging.getLogger()
|
425 |
-
root.setLevel(logging.WARN)
|
426 |
-
handler = logging.StreamHandler(sys.stderr)
|
427 |
-
handler.setLevel(logging.WARN)
|
428 |
-
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
|
429 |
-
handler.setFormatter(formatter)
|
430 |
-
root.addHandler(handler)
|
431 |
-
|
432 |
-
# constant data
|
433 |
-
|
434 |
-
MAX_SEED = np.iinfo(np.int32).max
|
435 |
-
|
436 |
-
# precision data
|
437 |
-
|
438 |
-
seq=512
|
439 |
-
image_steps=40
|
440 |
-
img_accu=6.5
|
441 |
-
|
442 |
-
# ui data
|
443 |
-
|
444 |
-
css="".join(["""
|
445 |
-
input, textarea, input::placeholder, textarea::placeholder {
|
446 |
-
text-align: center !important;
|
447 |
-
}
|
448 |
-
*, *::placeholder {
|
449 |
-
font-family: Suez One !important;
|
450 |
-
}
|
451 |
-
h1,h2,h3,h4,h5,h6 {
|
452 |
-
width: 100%;
|
453 |
-
text-align: center;
|
454 |
-
}
|
455 |
-
footer {
|
456 |
-
display: none !important;
|
457 |
-
}
|
458 |
-
.image-container {
|
459 |
-
aspect-ratio: 1/1 !important;
|
460 |
-
border: 2mm ridge black !important;
|
461 |
-
}
|
462 |
-
.dropdown-arrow {
|
463 |
-
display: none !important;
|
464 |
-
}
|
465 |
-
*:has(>.btn) {
|
466 |
-
display: flex;
|
467 |
-
justify-content: space-evenly;
|
468 |
-
align-items: center;
|
469 |
-
}
|
470 |
-
.btn {
|
471 |
-
display: flex;
|
472 |
-
}
|
473 |
-
|
474 |
-
/* Added background gradient for a more colorful look */
|
475 |
-
.gradio-container {
|
476 |
-
background: linear-gradient(to right, #ffecd2, #fcb69f) !important;
|
477 |
-
}
|
478 |
-
"""])
|
479 |
-
|
480 |
-
|
481 |
-
# torch pipes
|
482 |
-
|
483 |
-
image_pipe = DiffusionPipeline.from_pretrained("ostris/Flex.1-alpha", torch_dtype=dtype).to(device)
|
484 |
-
image_pipe.enable_model_cpu_offload()
|
485 |
-
|
486 |
-
torch.cuda.empty_cache()
|
487 |
-
|
488 |
-
# functionality
|
489 |
-
|
490 |
-
@spaces.GPU(duration=300)
|
491 |
-
def hard_scaler(img):
|
492 |
-
return upscaler(img)
|
493 |
-
|
494 |
-
@spaces.GPU(duration=150)
|
495 |
-
def easy_scaler(img):
|
496 |
-
return upscaler(img)
|
497 |
-
|
498 |
-
def handle_upscaler(img):
|
499 |
-
w, h = img.size
|
500 |
-
if w*h > 2 * (10 ** 6):
|
501 |
-
return hard_scaler(img)
|
502 |
-
return easy_scaler(img)
|
503 |
-
|
504 |
-
def upscaler(
|
505 |
-
input_image: Image.Image,
|
506 |
-
prompt: str = "Accurate, Highly Detailed, Realistic, Best Quality, Hyper-Realistic, Super-Realistic, Natural, Reasonable, Logical.",
|
507 |
-
negative_prompt: str = "Unreal, Exceptional, Irregular, Unusual, Blurry, Smoothed, Polished, Worst Quality, Worse Quality, Normal Quality, Painted, Movies Quality.",
|
508 |
-
seed: int = random.randint(0, MAX_SEED),
|
509 |
-
upscale_factor: int = 2,
|
510 |
-
controlnet_scale: float = 0.6,
|
511 |
-
controlnet_decay: float = 1.0,
|
512 |
-
condition_scale: int = 6,
|
513 |
-
tile_width: int = 112,
|
514 |
-
tile_height: int = 144,
|
515 |
-
denoise_strength: float = 0.35,
|
516 |
-
num_inference_steps: int = 20,
|
517 |
-
solver: str = "DDIM",
|
518 |
-
) -> Image.Image:
|
519 |
-
|
520 |
-
log(f'CALL upscaler')
|
521 |
-
|
522 |
-
manual_seed(seed)
|
523 |
-
solver_type: type[Solver] = getattr(solvers, solver)
|
524 |
-
|
525 |
-
log(f'DBG upscaler 1')
|
526 |
-
|
527 |
-
enhanced_image = enhancer.upscale(
|
528 |
-
image=input_image,
|
529 |
-
prompt=prompt,
|
530 |
-
negative_prompt=negative_prompt,
|
531 |
-
upscale_factor=upscale_factor,
|
532 |
-
controlnet_scale=controlnet_scale,
|
533 |
-
controlnet_scale_decay=controlnet_decay,
|
534 |
-
condition_scale=condition_scale,
|
535 |
-
tile_size=(tile_height, tile_width),
|
536 |
-
denoise_strength=denoise_strength,
|
537 |
-
num_inference_steps=num_inference_steps,
|
538 |
-
loras_scale={"more_details": 0.5, "sdxl_render": 1.0},
|
539 |
-
solver_type=solver_type,
|
540 |
-
)
|
541 |
-
|
542 |
-
log(f'RET upscaler')
|
543 |
-
return enhanced_image
|
544 |
-
|
545 |
-
def get_tensor_length(tensor):
|
546 |
-
nums = list(tensor.size())
|
547 |
-
ret = 1
|
548 |
-
for num in nums:
|
549 |
-
ret *= num
|
550 |
-
return ret
|
551 |
-
|
552 |
-
def _summarize(text):
|
553 |
-
log(f'CALL _summarize')
|
554 |
-
prefix = "summarize: "
|
555 |
-
toks = tokenizer.encode(prefix + text, return_tensors="pt", truncation=False)
|
556 |
-
gen = model.generate(
|
557 |
-
toks,
|
558 |
-
length_penalty=0.1,
|
559 |
-
num_beams=6,
|
560 |
-
early_stopping=True,
|
561 |
-
max_length=512
|
562 |
-
)
|
563 |
-
ret = tokenizer.decode(gen[0], skip_special_tokens=True)
|
564 |
-
log(f'RET _summarize with ret as {ret}')
|
565 |
-
return ret
|
566 |
-
|
567 |
-
def summarize(text, max_words=100):
|
568 |
-
log(f'CALL summarize')
|
569 |
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
if words_length >= 510:
|
574 |
-
while words_length >= 510:
|
575 |
-
words = text.split()
|
576 |
-
summ = _summarize(" ".join(words[0:510])) + " ".join(words[510:])
|
577 |
-
if summ == text:
|
578 |
-
return text
|
579 |
-
text = summ
|
580 |
-
words_length = len(text.split())
|
581 |
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
words_length = len(text.split())
|
588 |
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
w, h = img.size
|
598 |
-
draw = ImageDraw.Draw(img,mode="RGBA")
|
599 |
-
|
600 |
-
labels_distance = 1/3
|
601 |
-
|
602 |
-
if top_title:
|
603 |
-
rows = len(top_title.split("\n"))
|
604 |
-
textheight=min(math.ceil( w / 10 ), math.ceil( h / 5 ))
|
605 |
-
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
|
606 |
-
textwidth = draw.textlength(top_title,font)
|
607 |
-
x = math.ceil((w - textwidth) / 2)
|
608 |
-
y = h - (textheight * rows / 2) - (h / 2)
|
609 |
-
y = math.ceil(y - (h / 2 * labels_distance))
|
610 |
-
draw.text(
|
611 |
-
(x, y),
|
612 |
-
top_title,
|
613 |
-
(255,255,255),
|
614 |
-
font=font,
|
615 |
-
spacing=2,
|
616 |
-
stroke_width=math.ceil(textheight/20),
|
617 |
-
stroke_fill=(0,0,0)
|
618 |
-
)
|
619 |
-
|
620 |
-
if bottom_title:
|
621 |
-
rows = len(bottom_title.split("\n"))
|
622 |
-
textheight=min(math.ceil( w / 10 ), math.ceil( h / 5 ))
|
623 |
-
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
|
624 |
-
textwidth = draw.textlength(bottom_title,font)
|
625 |
-
x = math.ceil((w - textwidth) / 2)
|
626 |
-
y = h - (textheight * rows / 2) - (h / 2)
|
627 |
-
y = math.ceil(y + (h / 2 * labels_distance))
|
628 |
-
draw.text(
|
629 |
-
(x, y),
|
630 |
-
bottom_title,
|
631 |
-
(0,0,0),
|
632 |
-
font=font,
|
633 |
-
spacing=2,
|
634 |
-
stroke_width=math.ceil(textheight/20),
|
635 |
-
stroke_fill=(255,255,255)
|
636 |
-
)
|
637 |
|
638 |
-
return
|
639 |
-
|
640 |
-
# Modified parts from https://github.com/nidhaloff/deep-translator:
|
641 |
-
|
642 |
-
google_translate_endpoint = "https://translate.google.com/m"
|
643 |
-
language_codes = {
|
644 |
-
"afrikaans": "af",
|
645 |
-
"albanian": "sq",
|
646 |
-
"amharic": "am",
|
647 |
-
"arabic": "ar",
|
648 |
-
"armenian": "hy",
|
649 |
-
"assamese": "as",
|
650 |
-
"aymara": "ay",
|
651 |
-
"azerbaijani": "az",
|
652 |
-
"bambara": "bm",
|
653 |
-
"basque": "eu",
|
654 |
-
"belarusian": "be",
|
655 |
-
"bengali": "bn",
|
656 |
-
"bhojpuri": "bho",
|
657 |
-
"bosnian": "bs",
|
658 |
-
"bulgarian": "bg",
|
659 |
-
"catalan": "ca",
|
660 |
-
"cebuano": "ceb",
|
661 |
-
"chichewa": "ny",
|
662 |
-
"chinese (simplified)": "zh-CN",
|
663 |
-
"chinese (traditional)": "zh-TW",
|
664 |
-
"corsican": "co",
|
665 |
-
"croatian": "hr",
|
666 |
-
"czech": "cs",
|
667 |
-
"danish": "da",
|
668 |
-
"dhivehi": "dv",
|
669 |
-
"dogri": "doi",
|
670 |
-
"dutch": "nl",
|
671 |
-
"english": "en",
|
672 |
-
"esperanto": "eo",
|
673 |
-
"estonian": "et",
|
674 |
-
"ewe": "ee",
|
675 |
-
"filipino": "tl",
|
676 |
-
"finnish": "fi",
|
677 |
-
"french": "fr",
|
678 |
-
"frisian": "fy",
|
679 |
-
"galician": "gl",
|
680 |
-
"georgian": "ka",
|
681 |
-
"german": "de",
|
682 |
-
"greek": "el",
|
683 |
-
"guarani": "gn",
|
684 |
-
"gujarati": "gu",
|
685 |
-
"haitian creole": "ht",
|
686 |
-
"hausa": "ha",
|
687 |
-
"hawaiian": "haw",
|
688 |
-
"hebrew": "iw",
|
689 |
-
"hindi": "hi",
|
690 |
-
"hmong": "hmn",
|
691 |
-
"hungarian": "hu",
|
692 |
-
"icelandic": "is",
|
693 |
-
"igbo": "ig",
|
694 |
-
"ilocano": "ilo",
|
695 |
-
"indonesian": "id",
|
696 |
-
"irish": "ga",
|
697 |
-
"italian": "it",
|
698 |
-
"japanese": "ja",
|
699 |
-
"javanese": "jw",
|
700 |
-
"kannada": "kn",
|
701 |
-
"kazakh": "kk",
|
702 |
-
"khmer": "km",
|
703 |
-
"kinyarwanda": "rw",
|
704 |
-
"konkani": "gom",
|
705 |
-
"korean": "ko",
|
706 |
-
"krio": "kri",
|
707 |
-
"kurdish (kurmanji)": "ku",
|
708 |
-
"kurdish (sorani)": "ckb",
|
709 |
-
"kyrgyz": "ky",
|
710 |
-
"lao": "lo",
|
711 |
-
"latin": "la",
|
712 |
-
"latvian": "lv",
|
713 |
-
"lingala": "ln",
|
714 |
-
"lithuanian": "lt",
|
715 |
-
"luganda": "lg",
|
716 |
-
"luxembourgish": "lb",
|
717 |
-
"macedonian": "mk",
|
718 |
-
"maithili": "mai",
|
719 |
-
"malagasy": "mg",
|
720 |
-
"malay": "ms",
|
721 |
-
"malayalam": "ml",
|
722 |
-
"maltese": "mt",
|
723 |
-
"maori": "mi",
|
724 |
-
"marathi": "mr",
|
725 |
-
"meiteilon (manipuri)": "mni-Mtei",
|
726 |
-
"mizo": "lus",
|
727 |
-
"mongolian": "mn",
|
728 |
-
"myanmar": "my",
|
729 |
-
"nepali": "ne",
|
730 |
-
"norwegian": "no",
|
731 |
-
"odia (oriya)": "or",
|
732 |
-
"oromo": "om",
|
733 |
-
"pashto": "ps",
|
734 |
-
"persian": "fa",
|
735 |
-
"polish": "pl",
|
736 |
-
"portuguese": "pt",
|
737 |
-
"punjabi": "pa",
|
738 |
-
"quechua": "qu",
|
739 |
-
"romanian": "ro",
|
740 |
-
"russian": "ru",
|
741 |
-
"samoan": "sm",
|
742 |
-
"sanskrit": "sa",
|
743 |
-
"scots gaelic": "gd",
|
744 |
-
"sepedi": "nso",
|
745 |
-
"serbian": "sr",
|
746 |
-
"sesotho": "st",
|
747 |
-
"shona": "sn",
|
748 |
-
"sindhi": "sd",
|
749 |
-
"sinhala": "si",
|
750 |
-
"slovak": "sk",
|
751 |
-
"slovenian": "sl",
|
752 |
-
"somali": "so",
|
753 |
-
"spanish": "es",
|
754 |
-
"sundanese": "su",
|
755 |
-
"swahili": "sw",
|
756 |
-
"swedish": "sv",
|
757 |
-
"tajik": "tg",
|
758 |
-
"tamil": "ta",
|
759 |
-
"tatar": "tt",
|
760 |
-
"telugu": "te",
|
761 |
-
"thai": "th",
|
762 |
-
"tigrinya": "ti",
|
763 |
-
"tsonga": "ts",
|
764 |
-
"turkish": "tr",
|
765 |
-
"turkmen": "tk",
|
766 |
-
"twi": "ak",
|
767 |
-
"ukrainian": "uk",
|
768 |
-
"urdu": "ur",
|
769 |
-
"uyghur": "ug",
|
770 |
-
"uzbek": "uz",
|
771 |
-
"vietnamese": "vi",
|
772 |
-
"welsh": "cy",
|
773 |
-
"xhosa": "xh",
|
774 |
-
"yiddish": "yi",
|
775 |
-
"yoruba": "yo",
|
776 |
-
"zulu": "zu",
|
777 |
-
}
|
778 |
-
|
779 |
-
class BaseError(Exception):
|
780 |
-
"""
|
781 |
-
base error structure class
|
782 |
-
"""
|
783 |
-
|
784 |
-
def __init__(self, val, message):
|
785 |
-
self.val = val
|
786 |
-
self.message = message
|
787 |
-
super().__init__()
|
788 |
-
|
789 |
-
def __str__(self):
|
790 |
-
return "{} --> {}".format(self.val, self.message)
|
791 |
-
|
792 |
-
|
793 |
-
class LanguageNotSupportedException(BaseError):
|
794 |
-
"""
|
795 |
-
exception thrown if the user uses a language
|
796 |
-
that is not supported by the deep_translator
|
797 |
-
"""
|
798 |
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
"""
|
809 |
-
|
810 |
-
def __init__(
|
811 |
-
self,
|
812 |
-
val,
|
813 |
-
message="text must be a valid text with maximum 5000 character,"
|
814 |
-
"otherwise it cannot be translated",
|
815 |
-
):
|
816 |
-
super(NotValidPayload, self).__init__(val, message)
|
817 |
-
|
818 |
-
|
819 |
-
class InvalidSourceOrTargetLanguage(BaseError):
|
820 |
-
"""
|
821 |
-
exception thrown if the user enters an invalid payload
|
822 |
-
"""
|
823 |
-
|
824 |
-
def __init__(self, val, message="Invalid source or target language!"):
|
825 |
-
super(InvalidSourceOrTargetLanguage, self).__init__(val, message)
|
826 |
-
|
827 |
-
|
828 |
-
class TranslationNotFound(BaseError):
|
829 |
-
"""
|
830 |
-
exception thrown if no translation was found for the text provided by the user
|
831 |
-
"""
|
832 |
-
|
833 |
-
def __init__(
|
834 |
-
self,
|
835 |
-
val,
|
836 |
-
message="No translation was found using the current translator. Try another translator?",
|
837 |
-
):
|
838 |
-
super(TranslationNotFound, self).__init__(val, message)
|
839 |
-
|
840 |
-
|
841 |
-
class ElementNotFoundInGetRequest(BaseError):
|
842 |
-
"""
|
843 |
-
exception thrown if the html element was not found in the body parsed by beautifulsoup
|
844 |
-
"""
|
845 |
-
|
846 |
-
def __init__(
|
847 |
-
self, val, message="Required element was not found in the API response"
|
848 |
-
):
|
849 |
-
super(ElementNotFoundInGetRequest, self).__init__(val, message)
|
850 |
-
|
851 |
-
|
852 |
-
class NotValidLength(BaseError):
|
853 |
-
"""
|
854 |
-
exception thrown if the provided text exceed the length limit of the translator
|
855 |
-
"""
|
856 |
-
|
857 |
-
def __init__(self, val, min_chars, max_chars):
|
858 |
-
message = f"Text length need to be between {min_chars} and {max_chars} characters"
|
859 |
-
super(NotValidLength, self).__init__(val, message)
|
860 |
-
|
861 |
-
|
862 |
-
class RequestError(Exception):
|
863 |
-
"""
|
864 |
-
exception thrown if an error occurred during the request call, e.g a connection problem.
|
865 |
-
"""
|
866 |
-
|
867 |
-
def __init__(
|
868 |
-
self,
|
869 |
-
message="Request exception can happen due to an api connection error. "
|
870 |
-
"Please check your connection and try again",
|
871 |
-
):
|
872 |
-
self.message = message
|
873 |
-
|
874 |
-
def __str__(self):
|
875 |
-
return self.message
|
876 |
-
|
877 |
-
|
878 |
-
class TooManyRequests(Exception):
|
879 |
-
"""
|
880 |
-
exception thrown if an error occurred during the request call, e.g a connection problem.
|
881 |
-
"""
|
882 |
-
|
883 |
-
def __init__(
|
884 |
-
self,
|
885 |
-
message="Server Error: You made too many requests to the server."
|
886 |
-
"According to google, you are allowed to make 5 requests per second"
|
887 |
-
"and up to 200k requests per day. You can wait and try again later or"
|
888 |
-
"you can try the translate_batch function",
|
889 |
-
):
|
890 |
-
self.message = message
|
891 |
-
|
892 |
-
def __str__(self):
|
893 |
-
return self.message
|
894 |
-
|
895 |
-
|
896 |
-
class ServerException(Exception):
|
897 |
-
"""
|
898 |
-
Default YandexTranslate exception from the official website
|
899 |
-
"""
|
900 |
-
|
901 |
-
errors = {
|
902 |
-
400: "ERR_BAD_REQUEST",
|
903 |
-
401: "ERR_KEY_INVALID",
|
904 |
-
402: "ERR_KEY_BLOCKED",
|
905 |
-
403: "ERR_DAILY_REQ_LIMIT_EXCEEDED",
|
906 |
-
404: "ERR_DAILY_CHAR_LIMIT_EXCEEDED",
|
907 |
-
413: "ERR_TEXT_TOO_LONG",
|
908 |
-
429: "ERR_TOO_MANY_REQUESTS",
|
909 |
-
422: "ERR_UNPROCESSABLE_TEXT",
|
910 |
-
500: "ERR_INTERNAL_SERVER_ERROR",
|
911 |
-
501: "ERR_LANG_NOT_SUPPORTED",
|
912 |
-
503: "ERR_SERVICE_NOT_AVAIBLE",
|
913 |
-
}
|
914 |
-
|
915 |
-
def __init__(self, status_code, *args):
|
916 |
-
message = self.errors.get(status_code, "API server error")
|
917 |
-
super(ServerException, self).__init__(message, *args)
|
918 |
-
|
919 |
-
def is_empty(text: str) -> bool:
|
920 |
-
return text == ""
|
921 |
-
|
922 |
-
|
923 |
-
def request_failed(status_code: int) -> bool:
|
924 |
-
"""Check if a request has failed or not.
|
925 |
-
A request is considered successful if the status code is in the 2** range."""
|
926 |
-
if status_code > 299 or status_code < 200:
|
927 |
-
return True
|
928 |
-
return False
|
929 |
-
|
930 |
-
|
931 |
-
def is_input_valid(
|
932 |
-
text: str, min_chars: int = 0, max_chars: Optional[int] = None
|
933 |
-
) -> bool:
|
934 |
-
"""
|
935 |
-
validate the target text to translate
|
936 |
-
@param min_chars: min characters
|
937 |
-
@param max_chars: max characters
|
938 |
-
@param text: text to translate
|
939 |
-
@return: bool
|
940 |
-
"""
|
941 |
-
if not isinstance(text, str):
|
942 |
-
raise NotValidPayload(text)
|
943 |
-
if max_chars and (not min_chars <= len(text) < max_chars):
|
944 |
-
raise NotValidLength(text, min_chars, max_chars)
|
945 |
-
return True
|
946 |
-
|
947 |
-
class BaseTranslator(ABC):
|
948 |
-
"""
|
949 |
-
Abstract class that serve as a base translator for other different translators
|
950 |
-
"""
|
951 |
-
|
952 |
-
def __init__(
|
953 |
-
self,
|
954 |
-
base_url: str = None,
|
955 |
-
languages: dict = language_codes,
|
956 |
-
source: str = "auto",
|
957 |
-
target: str = "en",
|
958 |
-
payload_key: Optional[str] = None,
|
959 |
-
element_tag: Optional[str] = None,
|
960 |
-
element_query: Optional[dict] = None,
|
961 |
-
**url_params,
|
962 |
-
):
|
963 |
-
"""
|
964 |
-
@param source: source language to translate from
|
965 |
-
@param target: target language to translate to
|
966 |
-
"""
|
967 |
-
self._base_url = base_url
|
968 |
-
self._languages = languages
|
969 |
-
self._supported_languages = list(self._languages.keys())
|
970 |
-
if not source:
|
971 |
-
raise InvalidSourceOrTargetLanguage(source)
|
972 |
-
if not target:
|
973 |
-
raise InvalidSourceOrTargetLanguage(target)
|
974 |
-
|
975 |
-
self._source, self._target = self._map_language_to_code(source, target)
|
976 |
-
self._url_params = url_params
|
977 |
-
self._element_tag = element_tag
|
978 |
-
self._element_query = element_query
|
979 |
-
self.payload_key = payload_key
|
980 |
-
super().__init__()
|
981 |
-
|
982 |
-
@property
|
983 |
-
def source(self):
|
984 |
-
return self._source
|
985 |
-
|
986 |
-
@source.setter
|
987 |
-
def source(self, lang):
|
988 |
-
self._source = lang
|
989 |
-
|
990 |
-
@property
|
991 |
-
def target(self):
|
992 |
-
return self._target
|
993 |
-
|
994 |
-
@target.setter
|
995 |
-
def target(self, lang):
|
996 |
-
self._target = lang
|
997 |
-
|
998 |
-
def _type(self):
|
999 |
-
return self.__class__.__name__
|
1000 |
-
|
1001 |
-
def _map_language_to_code(self, *languages):
|
1002 |
-
"""
|
1003 |
-
map language to its corresponding code (abbreviation) if the language was passed
|
1004 |
-
by its full name by the user
|
1005 |
-
@param languages: list of languages
|
1006 |
-
@return: mapped value of the language or raise an exception if the language is
|
1007 |
-
not supported
|
1008 |
-
"""
|
1009 |
-
for language in languages:
|
1010 |
-
if language in self._languages.values() or language == "auto":
|
1011 |
-
yield language
|
1012 |
-
elif language in self._languages.keys():
|
1013 |
-
yield self._languages[language]
|
1014 |
-
else:
|
1015 |
-
raise LanguageNotSupportedException(
|
1016 |
-
language,
|
1017 |
-
message=f"No support for the provided language.\n"
|
1018 |
-
f"Please select on of the supported languages:\n"
|
1019 |
-
f"{self._languages}",
|
1020 |
-
)
|
1021 |
-
|
1022 |
-
def _same_source_target(self) -> bool:
|
1023 |
-
return self._source == self._target
|
1024 |
-
|
1025 |
-
def get_supported_languages(
|
1026 |
-
self, as_dict: bool = False, **kwargs
|
1027 |
-
) -> Union[list, dict]:
|
1028 |
-
"""
|
1029 |
-
return the supported languages by the Google translator
|
1030 |
-
@param as_dict: if True, the languages will be returned as a dictionary
|
1031 |
-
mapping languages to their abbreviations
|
1032 |
-
@return: list or dict
|
1033 |
-
"""
|
1034 |
-
return self._supported_languages if not as_dict else self._languages
|
1035 |
-
|
1036 |
-
def is_language_supported(self, language: str, **kwargs) -> bool:
|
1037 |
-
"""
|
1038 |
-
check if the language is supported by the translator
|
1039 |
-
@param language: a string for 1 language
|
1040 |
-
@return: bool
|
1041 |
-
"""
|
1042 |
-
if (
|
1043 |
-
language == "auto"
|
1044 |
-
or language in self._languages.keys()
|
1045 |
-
or language in self._languages.values()
|
1046 |
-
):
|
1047 |
-
return True
|
1048 |
-
else:
|
1049 |
-
return False
|
1050 |
-
|
1051 |
-
@abstractmethod
|
1052 |
-
def translate(self, text: str, **kwargs) -> str:
|
1053 |
-
"""
|
1054 |
-
translate a text using a translator under the hood and return
|
1055 |
-
the translated text
|
1056 |
-
@param text: text to translate
|
1057 |
-
@param kwargs: additional arguments
|
1058 |
-
@return: str
|
1059 |
-
"""
|
1060 |
-
return NotImplemented("You need to implement the translate method!")
|
1061 |
-
|
1062 |
-
def _read_docx(self, f: str):
|
1063 |
-
import docx2txt
|
1064 |
-
return docx2txt.process(f)
|
1065 |
-
|
1066 |
-
def _read_pdf(self, f: str):
|
1067 |
-
import pypdf
|
1068 |
-
reader = pypdf.PdfReader(f)
|
1069 |
-
page = reader.pages[0]
|
1070 |
-
return page.extract_text()
|
1071 |
-
|
1072 |
-
def _translate_file(self, path: str, **kwargs) -> str:
|
1073 |
-
"""
|
1074 |
-
translate directly from file
|
1075 |
-
@param path: path to the target file
|
1076 |
-
@type path: str
|
1077 |
-
@param kwargs: additional args
|
1078 |
-
@return: str
|
1079 |
-
"""
|
1080 |
-
if not isinstance(path, Path):
|
1081 |
-
path = Path(path)
|
1082 |
-
|
1083 |
-
if not path.exists():
|
1084 |
-
print("Path to the file is wrong!")
|
1085 |
-
exit(1)
|
1086 |
-
|
1087 |
-
ext = path.suffix
|
1088 |
-
|
1089 |
-
if ext == ".docx":
|
1090 |
-
text = self._read_docx(f=str(path))
|
1091 |
-
elif ext == ".pdf":
|
1092 |
-
text = self._read_pdf(f=str(path))
|
1093 |
-
else:
|
1094 |
-
with open(path, "r", encoding="utf-8") as f:
|
1095 |
-
text = f.read().strip()
|
1096 |
-
|
1097 |
-
return self.translate(text)
|
1098 |
-
|
1099 |
-
def _translate_batch(self, batch: List[str], **kwargs) -> List[str]:
|
1100 |
-
"""
|
1101 |
-
translate a list of texts
|
1102 |
-
@param batch: list of texts you want to translate
|
1103 |
-
@return: list of translations
|
1104 |
-
"""
|
1105 |
-
if not batch:
|
1106 |
-
raise Exception("Enter your text list that you want to translate")
|
1107 |
-
arr = []
|
1108 |
-
for i, text in enumerate(batch):
|
1109 |
-
translated = self.translate(text, **kwargs)
|
1110 |
-
arr.append(translated)
|
1111 |
-
return arr
|
1112 |
-
|
1113 |
-
class GoogleTranslator(BaseTranslator):
|
1114 |
-
"""
|
1115 |
-
class that wraps functions, which use Google Translate under the hood to translate text(s)
|
1116 |
"""
|
1117 |
-
|
1118 |
-
|
1119 |
-
|
1120 |
-
|
1121 |
-
|
1122 |
-
|
1123 |
-
|
1124 |
-
|
1125 |
-
|
1126 |
-
|
1127 |
-
|
1128 |
-
|
1129 |
-
|
1130 |
-
|
1131 |
-
|
1132 |
-
|
1133 |
-
|
1134 |
-
|
1135 |
-
|
1136 |
-
|
1137 |
-
|
1138 |
-
|
1139 |
-
|
1140 |
-
|
1141 |
-
|
1142 |
-
|
1143 |
-
|
1144 |
-
|
1145 |
-
|
1146 |
-
if self.payload_key:
|
1147 |
-
self._url_params[self.payload_key] = text
|
1148 |
-
|
1149 |
-
response = requests.get(
|
1150 |
-
self._base_url, params=self._url_params, proxies=self.proxies
|
1151 |
)
|
1152 |
-
|
1153 |
-
|
1154 |
-
|
1155 |
-
|
1156 |
-
|
1157 |
-
|
1158 |
-
|
1159 |
-
|
1160 |
-
element = soup.find(self._element_tag, self._element_query)
|
1161 |
-
response.close()
|
1162 |
-
|
1163 |
-
if not element:
|
1164 |
-
element = soup.find(self._element_tag, self._alt_element_query)
|
1165 |
-
if not element:
|
1166 |
-
raise TranslationNotFound(text)
|
1167 |
-
|
1168 |
-
if element.get_text(strip=True) == text.strip():
|
1169 |
-
to_translate_alpha = "".join(ch for ch in text.strip() if ch.isalnum())
|
1170 |
-
translated_alpha = "".join(ch for ch in element.get_text(strip=True) if ch.isalnum())
|
1171 |
-
if (
|
1172 |
-
to_translate_alpha
|
1173 |
-
and translated_alpha
|
1174 |
-
and to_translate_alpha == translated_alpha
|
1175 |
-
):
|
1176 |
-
self._url_params["tl"] = self._target
|
1177 |
-
if "hl" not in self._url_params:
|
1178 |
-
return text.strip()
|
1179 |
-
del self._url_params["hl"]
|
1180 |
-
return self.translate(text)
|
1181 |
-
else:
|
1182 |
-
return element.get_text(strip=True)
|
1183 |
-
|
1184 |
-
def translate_file(self, path: str, **kwargs) -> str:
|
1185 |
-
return self._translate_file(path, **kwargs)
|
1186 |
-
|
1187 |
-
def translate_batch(self, batch: List[str], **kwargs) -> List[str]:
|
1188 |
-
return self._translate_batch(batch, **kwargs)
|
1189 |
-
|
1190 |
-
|
1191 |
-
def translate(txt,to_lang="en",from_lang="auto"):
|
1192 |
-
log(f'CALL translate')
|
1193 |
-
if len(txt) == 0:
|
1194 |
-
print("Translated text is empty. Skipping translation...")
|
1195 |
-
return txt.strip().lower()
|
1196 |
-
if from_lang == to_lang or get_language(txt) == to_lang:
|
1197 |
-
print("Same languages. Skipping translation...")
|
1198 |
-
return txt.strip().lower()
|
1199 |
-
translator = GoogleTranslator(from_lang=from_lang,to_lang=to_lang)
|
1200 |
-
translation = ""
|
1201 |
-
if len(txt) > 1000:
|
1202 |
-
words = txt.split()
|
1203 |
-
while len(words) > 0:
|
1204 |
-
chunk = ""
|
1205 |
-
while len(words) > 0 and len(chunk) < 1000:
|
1206 |
-
chunk = chunk + " " + words[0]
|
1207 |
-
words = words[1:]
|
1208 |
-
if len(chunk) > 1000:
|
1209 |
-
_words = chunk.split()
|
1210 |
-
words = [_words[-1], *words]
|
1211 |
-
chunk = " ".join(_words[:-1])
|
1212 |
-
translation = translation + " " + translator.translate(chunk)
|
1213 |
-
else:
|
1214 |
-
translation = translator.translate(txt)
|
1215 |
-
translation = translation.strip()
|
1216 |
-
log(f'RET translate with translation as {translation}')
|
1217 |
-
return translation.lower()
|
1218 |
-
|
1219 |
-
def handle_generation(h,w,d):
|
1220 |
-
log(f'CALL handle_generate')
|
1221 |
-
difficulty_points = 0
|
1222 |
-
|
1223 |
-
toks_len = get_tensor_length(tokenizer.encode(d, return_tensors="pt", truncation=False))
|
1224 |
-
if toks_len > 500:
|
1225 |
-
difficulty_points += 2
|
1226 |
-
elif toks_len > 50:
|
1227 |
-
difficulty_points += 1
|
1228 |
-
|
1229 |
-
pxs = h*w
|
1230 |
-
if pxs > 2 * (10 ** 6):
|
1231 |
-
difficulty_points += 2
|
1232 |
-
elif pxs > 1 * (10 ** 6):
|
1233 |
-
difficulty_points += 1
|
1234 |
-
|
1235 |
-
if difficulty_points < 2:
|
1236 |
-
return easy_generation(h,w,d)
|
1237 |
-
elif difficulty_points < 4:
|
1238 |
-
return balanced_generation(h,w,d)
|
1239 |
-
else:
|
1240 |
-
return hard_generation(h,w,d)
|
1241 |
-
|
1242 |
-
@spaces.GPU(duration=150)
|
1243 |
-
def easy_generation(h,w,d):
|
1244 |
-
return generation(h,w,d)
|
1245 |
-
|
1246 |
-
@spaces.GPU(duration=210)
|
1247 |
-
def balanced_generation(h,w,d):
|
1248 |
-
return generation(h,w,d)
|
1249 |
-
|
1250 |
-
@spaces.GPU(duration=270)
|
1251 |
-
def hard_generation(h,w,d):
|
1252 |
-
return generation(h,w,d)
|
1253 |
-
|
1254 |
-
def generation(h,w,d):
|
1255 |
-
if len(d) > 0:
|
1256 |
-
d = re.sub(r",( ){1,}",". ",d)
|
1257 |
-
d_lines = re.split(r"([\n]){1,}", d)
|
1258 |
|
1259 |
-
|
1260 |
-
|
1261 |
-
if d_lines[line_index] != "" and re.sub(r'[\.]$', '', d_lines[line_index]) == d_lines[line_index]:
|
1262 |
-
d_lines[line_index] += "."
|
1263 |
-
d = " ".join(d_lines)
|
1264 |
|
1265 |
-
|
1266 |
-
|
1267 |
-
|
1268 |
-
|
1269 |
-
|
1270 |
-
|
1271 |
-
|
1272 |
-
|
1273 |
-
|
1274 |
-
|
1275 |
-
|
1276 |
-
Negative: {neg}
|
1277 |
-
""")
|
1278 |
-
|
1279 |
-
img = image_pipe(
|
1280 |
-
prompt=pos,
|
1281 |
-
negative_prompt=neg,
|
1282 |
-
height=h,
|
1283 |
-
width=w,
|
1284 |
-
output_type="pil",
|
1285 |
-
guidance_scale=img_accu,
|
1286 |
-
num_images_per_prompt=1,
|
1287 |
-
num_inference_steps=image_steps,
|
1288 |
-
max_sequence_length=seq,
|
1289 |
-
generator=torch.Generator(device).manual_seed(random.randint(0, MAX_SEED))
|
1290 |
-
).images[0]
|
1291 |
-
return img
|
1292 |
-
|
1293 |
-
# entry
|
1294 |
-
|
1295 |
-
if __name__ == "__main__":
|
1296 |
-
# Changed the theme to a more colorful one and updated the title to English
|
1297 |
-
with gr.Blocks(theme=gr.themes.Soft(primary_hue="lime"), css=css) as demo:
|
1298 |
-
gr.Markdown(f"""
|
1299 |
-
# Multilingual Images
|
1300 |
-
""")
|
1301 |
-
gr.Markdown(f"""
|
1302 |
-
### Realistic. Upscalable. Multilingual.
|
1303 |
-
""")
|
1304 |
-
|
1305 |
-
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2Faiqcamp-Multilingual-Images.hf.space">
|
1306 |
-
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Faiqcamp-Multilingual-Images.hf.space&countColor=%23263759" />
|
1307 |
-
</a>""")
|
1308 |
-
|
1309 |
-
|
1310 |
-
with gr.Row():
|
1311 |
-
with gr.Column(scale=2):
|
1312 |
-
height = gr.Slider(
|
1313 |
-
label="Height (px)",
|
1314 |
-
minimum=512,
|
1315 |
-
maximum=1536,
|
1316 |
-
step=16,
|
1317 |
-
value=1024,
|
1318 |
-
)
|
1319 |
-
width = gr.Slider(
|
1320 |
-
label="Width (px)",
|
1321 |
-
minimum=512,
|
1322 |
-
maximum=1536,
|
1323 |
-
step=16,
|
1324 |
-
value=1024,
|
1325 |
-
)
|
1326 |
-
|
1327 |
-
run = gr.Button("Generate", elem_classes="btn")
|
1328 |
-
|
1329 |
-
top = gr.Textbox(
|
1330 |
-
placeholder="Top Title",
|
1331 |
-
value="",
|
1332 |
-
container=False,
|
1333 |
-
max_lines=1
|
1334 |
-
)
|
1335 |
-
bottom = gr.Textbox(
|
1336 |
-
placeholder="Bottom Title",
|
1337 |
-
value="",
|
1338 |
-
container=False,
|
1339 |
-
max_lines=1
|
1340 |
-
)
|
1341 |
-
|
1342 |
-
data = gr.Textbox(
|
1343 |
-
placeholder="Enter your text/prompt (multiple languages allowed)",
|
1344 |
-
value="",
|
1345 |
-
container=False,
|
1346 |
-
max_lines=100
|
1347 |
-
)
|
1348 |
-
|
1349 |
-
with gr.Column():
|
1350 |
-
cover = gr.Image(
|
1351 |
-
interactive=False,
|
1352 |
-
container=False,
|
1353 |
-
elem_classes="image-container",
|
1354 |
-
label="Result",
|
1355 |
-
show_label=True,
|
1356 |
-
type='pil',
|
1357 |
-
show_share_button=False
|
1358 |
-
)
|
1359 |
-
upscale_now = gr.Button("Upscale x2", elem_classes="btn")
|
1360 |
-
add_titles = gr.Button("Add title(s)", elem_classes="btn")
|
1361 |
-
|
1362 |
-
gr.Markdown("---")
|
1363 |
-
|
1364 |
-
# Bottom row explanation or details in English
|
1365 |
-
gr.Markdown("""
|
1366 |
-
## Features
|
1367 |
-
1. **Text Input**: You can input text in various languages; it will be automatically translated and summarized before generating an image.
|
1368 |
-
2. **Image Size Adjustment**: Use sliders to specify the width and height of the output image.
|
1369 |
-
3. **Overlay Text**: Easily add top/bottom titles to the generated image with a simple button click.
|
1370 |
-
4. **High-Quality Upscaling**: Increase the resolution with the "Upscale x2" feature.
|
1371 |
-
5. **Automatic GPU Resource Management**: The system automatically adjusts GPU usage time depending on input text length and image size.
|
1372 |
-
---
|
1373 |
-
""")
|
1374 |
-
|
1375 |
gr.Markdown("""
|
1376 |
-
###
|
1377 |
-
|
1378 |
-
|
1379 |
-
|
1380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1381 |
""")
|
1382 |
|
1383 |
-
|
1384 |
-
|
1385 |
-
|
1386 |
-
|
1387 |
-
|
1388 |
-
|
1389 |
-
)
|
1390 |
-
upscale_now.click(
|
1391 |
-
fn=handle_upscaler,
|
1392 |
-
inputs=[cover],
|
1393 |
-
outputs=[cover]
|
1394 |
-
)
|
1395 |
-
add_titles.click(
|
1396 |
-
fn=add_text_above_image,
|
1397 |
-
inputs=[cover, top, bottom],
|
1398 |
-
outputs=[cover]
|
1399 |
-
)
|
1400 |
-
|
1401 |
-
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import io
|
6 |
+
import base64
|
7 |
+
from kokoro import KModel, KPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Check if CUDA is available
|
10 |
+
CUDA_AVAILABLE = torch.cuda.is_available()
|
11 |
|
12 |
+
# Initialize the model
|
13 |
+
model = KModel().to('cuda' if CUDA_AVAILABLE else 'cpu').eval()
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Initialize pipelines for different language codes (using 'a' for English)
|
16 |
+
pipelines = {'a': KPipeline(lang_code='a', model=False)}
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Custom pronunciation for "kokoro"
|
19 |
+
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
20 |
|
21 |
+
def text_to_audio(text, speed=1.0):
|
22 |
+
"""Convert text to audio using Kokoro model.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
text: The text to convert to speech
|
26 |
+
speed: Speech speed multiplier (0.5-2.0, where 1.0 is normal speed)
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
Audio data as a tuple of (sample_rate, audio_array)
|
30 |
"""
|
31 |
+
if not text:
|
32 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
pipeline = pipelines['a'] # Use English pipeline
|
35 |
+
voice = "af_heart" # Default voice (US English, female, Heart)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
# Process the text
|
38 |
+
pack = pipeline.load_voice(voice)
|
39 |
+
|
40 |
+
for _, ps, _ in pipeline(text, voice, speed):
|
41 |
+
ref_s = pack[len(ps)-1]
|
|
|
42 |
|
43 |
+
# Generate audio
|
44 |
+
try:
|
45 |
+
audio = model(ps, ref_s, speed)
|
46 |
+
except Exception as e:
|
47 |
+
raise gr.Error(f"Error generating audio: {str(e)}")
|
48 |
+
|
49 |
+
# Return the audio with 24kHz sample rate
|
50 |
+
return 24000, audio.numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
def text_to_audio_b64(text, speed=1.0):
|
55 |
+
"""Convert text to audio and return as base64 encoded WAV file.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
text: The text to convert to speech
|
59 |
+
speed: Speech speed multiplier (0.5-2.0, where 1.0 is normal speed)
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
Base64 encoded WAV file as a string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
"""
|
64 |
+
import soundfile as sf
|
65 |
+
|
66 |
+
result = text_to_audio(text, speed)
|
67 |
+
if result is None:
|
68 |
+
return None
|
69 |
+
|
70 |
+
sample_rate, audio_data = result
|
71 |
+
|
72 |
+
# Save to BytesIO object
|
73 |
+
wav_io = io.BytesIO()
|
74 |
+
sf.write(wav_io, audio_data, sample_rate, format='WAV')
|
75 |
+
wav_io.seek(0)
|
76 |
+
|
77 |
+
# Convert to base64
|
78 |
+
wav_b64 = base64.b64encode(wav_io.read()).decode('utf-8')
|
79 |
+
return wav_b64
|
80 |
+
|
81 |
+
# Create Gradio interface
|
82 |
+
with gr.Blocks(title="Kokoro Text-to-Audio MCP") as app:
|
83 |
+
gr.Markdown("# 🎵 Kokoro Text-to-Audio MCP")
|
84 |
+
gr.Markdown("Convert text to speech using the Kokoro-82M model")
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
with gr.Column():
|
88 |
+
text_input = gr.Textbox(
|
89 |
+
label="Enter your text",
|
90 |
+
placeholder="Type something to convert to audio...",
|
91 |
+
lines=5
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
)
|
93 |
+
speed_slider = gr.Slider(
|
94 |
+
minimum=0.5,
|
95 |
+
maximum=2.0,
|
96 |
+
value=1.0,
|
97 |
+
step=0.1,
|
98 |
+
label="Speech Speed"
|
99 |
+
)
|
100 |
+
submit_btn = gr.Button("Generate Audio")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
with gr.Column():
|
103 |
+
audio_output = gr.Audio(label="Generated Audio", type="numpy")
|
|
|
|
|
|
|
104 |
|
105 |
+
submit_btn.click(
|
106 |
+
fn=text_to_audio,
|
107 |
+
inputs=[text_input, speed_slider],
|
108 |
+
outputs=[audio_output]
|
109 |
+
)
|
110 |
+
|
111 |
+
gr.Markdown("### Usage Tips")
|
112 |
+
gr.Markdown("- Adjust the speed slider to modify the pace of speech")
|
113 |
+
|
114 |
+
# Add section about MCP support
|
115 |
+
with gr.Accordion("MCP Support (for LLMs)", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
gr.Markdown("""
|
117 |
+
### MCP Support
|
118 |
+
|
119 |
+
This app supports the Model Context Protocol (MCP), allowing Large Language Models like Claude Desktop to use it as a tool.
|
120 |
+
|
121 |
+
To use this app with an MCP client, add the following configuration:
|
122 |
+
|
123 |
+
```json
|
124 |
+
{
|
125 |
+
"mcpServers": {
|
126 |
+
"kokoroTTS": {
|
127 |
+
"url": "https://fdaudens-kokoro-mcp.hf.space/gradio_api/mcp/sse"
|
128 |
+
}
|
129 |
+
}
|
130 |
+
}
|
131 |
+
```
|
132 |
+
|
133 |
+
Replace `your-app-url.hf.space` with your actual Hugging Face Space URL.
|
134 |
""")
|
135 |
|
136 |
+
# Launch the app with MCP support
|
137 |
+
if __name__ == "__main__":
|
138 |
+
# Check for environment variable to enable MCP
|
139 |
+
enable_mcp = os.environ.get('GRADIO_MCP_SERVER', 'False').lower() in ('true', '1', 't')
|
140 |
+
|
141 |
+
app.launch(mcp_server=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|