Yaron Koresh commited on
Commit
8f995d2
·
verified ·
1 Parent(s): 08d3662

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -34,11 +34,11 @@ step = 4
34
  accu=2
35
  repo = "ByteDance/AnimateDiff-Lightning"
36
  ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
37
- #base = "emilianJR/epiCRealism"
38
- base = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
39
- vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=dtype)
40
  #unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
41
- adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)
42
 
43
  css="""
44
  input, input::placeholder {
@@ -193,7 +193,7 @@ def run(i,m,p1,p2,*result):
193
 
194
  return out
195
 
196
- pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, vae=vae, torch_dtype=dtype).to(device)
197
  pipe.scheduler = DDIMScheduler(
198
  clip_sample=False,
199
  beta_start=0.00085,
 
34
  accu=2
35
  repo = "ByteDance/AnimateDiff-Lightning"
36
  ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
37
+ base = "emilianJR/epiCRealism"
38
+ #base = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
39
+ #vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=dtype)
40
  #unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
41
+ #adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)
42
 
43
  css="""
44
  input, input::placeholder {
 
193
 
194
  return out
195
 
196
+ pipe = AnimateDiffPipeline.from_pretrained(base, torch_dtype=dtype).to(device)
197
  pipe.scheduler = DDIMScheduler(
198
  clip_sample=False,
199
  beta_start=0.00085,