Spaces:
Running
Running
Yaron Koresh
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -18,17 +18,17 @@ from diffusers.utils import export_to_gif, load_image
|
|
18 |
from diffusers.models.modeling_utils import ModelMixin
|
19 |
from huggingface_hub import hf_hub_download
|
20 |
from safetensors.torch import load_file, save_file
|
21 |
-
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
|
22 |
import jax
|
23 |
import jax.numpy as jnp
|
24 |
|
25 |
last_motion=None
|
26 |
fps=15
|
27 |
-
time=
|
28 |
device = "cuda"
|
29 |
dtype = torch.float16
|
30 |
result=[]
|
31 |
-
step =
|
32 |
#repo = "ByteDance/AnimateDiff-Lightning"
|
33 |
#ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
34 |
#base = "emilianJR/epiCRealism"
|
@@ -142,18 +142,15 @@ def Piper(image,positive,negative,motion):
|
|
142 |
last_motion = motion
|
143 |
|
144 |
pipe.to(device)
|
145 |
-
|
146 |
-
if negative == "":
|
147 |
-
negative = None
|
148 |
-
|
149 |
return pipe(
|
150 |
-
positive,
|
151 |
negative_prompt=negative,
|
152 |
height=1024,
|
153 |
width=576,
|
154 |
ip_adapter_image=image.convert("RGB").resize((576,1024)),
|
155 |
num_inference_steps=step,
|
156 |
-
guidance_scale=
|
157 |
num_frames=(fps*time)
|
158 |
)
|
159 |
|
@@ -194,12 +191,13 @@ def run(i,m,p1,p2,*result):
|
|
194 |
return out
|
195 |
|
196 |
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
197 |
-
pipe.scheduler =
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
203 |
)
|
204 |
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
|
205 |
pipe.enable_vae_slicing()
|
|
|
18 |
from diffusers.models.modeling_utils import ModelMixin
|
19 |
from huggingface_hub import hf_hub_download
|
20 |
from safetensors.torch import load_file, save_file
|
21 |
+
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
|
22 |
import jax
|
23 |
import jax.numpy as jnp
|
24 |
|
25 |
last_motion=None
|
26 |
fps=15
|
27 |
+
time=2
|
28 |
device = "cuda"
|
29 |
dtype = torch.float16
|
30 |
result=[]
|
31 |
+
step = 30
|
32 |
#repo = "ByteDance/AnimateDiff-Lightning"
|
33 |
#ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
34 |
#base = "emilianJR/epiCRealism"
|
|
|
142 |
last_motion = motion
|
143 |
|
144 |
pipe.to(device)
|
145 |
+
|
|
|
|
|
|
|
146 |
return pipe(
|
147 |
+
prompt=positive,
|
148 |
negative_prompt=negative,
|
149 |
height=1024,
|
150 |
width=576,
|
151 |
ip_adapter_image=image.convert("RGB").resize((576,1024)),
|
152 |
num_inference_steps=step,
|
153 |
+
guidance_scale=7.5,
|
154 |
num_frames=(fps*time)
|
155 |
)
|
156 |
|
|
|
191 |
return out
|
192 |
|
193 |
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
194 |
+
pipe.scheduler = DDIMScheduler(
|
195 |
+
clip_sample=False,
|
196 |
+
beta_start=0.00085,
|
197 |
+
beta_end=0.012,
|
198 |
+
beta_schedule="linear",
|
199 |
+
timestep_spacing="trailing",
|
200 |
+
steps_offset=1
|
201 |
)
|
202 |
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
|
203 |
pipe.enable_vae_slicing()
|