Spaces:
Running
Running
Yaron Koresh
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -42,28 +42,6 @@ run("apt install mpich libopenmpi-dev")
|
|
42 |
run("python -m pip install --upgrade pip")
|
43 |
run("pip install -r req.txt")
|
44 |
|
45 |
-
def deps():
|
46 |
-
import spaces
|
47 |
-
import torch
|
48 |
-
import gradio as gr
|
49 |
-
import numpy as np
|
50 |
-
from lxml.html import fromstring
|
51 |
-
#from transformers import pipeline
|
52 |
-
from torch import multiprocessing as mp, nn
|
53 |
-
#from torch.multiprocessing import Pool
|
54 |
-
#from pathos.multiprocessing import ProcessPool as Pool
|
55 |
-
#from pathos.threading import ThreadPool as Pool
|
56 |
-
#from diffusers.pipelines.flux import FluxPipeline
|
57 |
-
from diffusers.utils import export_to_gif, load_image
|
58 |
-
from diffusers.models.modeling_utils import ModelMixin
|
59 |
-
from huggingface_hub import hf_hub_download
|
60 |
-
from safetensors.torch import load_file, save_file
|
61 |
-
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
|
62 |
-
#import jax
|
63 |
-
#import jax.numpy as jnp
|
64 |
-
from pyina.launchers import TorqueMpiPool as Pool
|
65 |
-
deps()
|
66 |
-
|
67 |
last_motion=None
|
68 |
dtype = torch.float16
|
69 |
result=[]
|
@@ -125,6 +103,33 @@ function custom(){
|
|
125 |
}
|
126 |
"""
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
def translate(text,lang):
|
129 |
if text == None or lang == None:
|
130 |
return ""
|
@@ -166,11 +171,13 @@ def translate(text,lang):
|
|
166 |
print(ret)
|
167 |
return ret
|
168 |
|
|
|
169 |
def generate_random_string(length):
|
170 |
characters = string.ascii_letters + string.digits
|
171 |
return ''.join(random.choice(characters) for _ in range(length))
|
172 |
|
173 |
-
|
|
|
174 |
def Piper(image,positive,negative,motion):
|
175 |
global last_motion
|
176 |
global ip_loaded
|
@@ -207,6 +214,7 @@ def Piper(image,positive,negative,motion):
|
|
207 |
num_frames=(fps*time)
|
208 |
)
|
209 |
|
|
|
210 |
def infer(pm):
|
211 |
print("infer: started")
|
212 |
|
@@ -228,82 +236,94 @@ def infer(pm):
|
|
228 |
export_to_gif(out.frames[0],name,fps=fps)
|
229 |
return name
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
-
pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
244 |
-
pipe.scheduler = DDIMScheduler(
|
245 |
clip_sample=False,
|
246 |
beta_start=0.00085,
|
247 |
beta_end=0.012,
|
248 |
beta_schedule="linear",
|
249 |
timestep_spacing="trailing",
|
250 |
steps_offset=1
|
251 |
-
)
|
252 |
-
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
|
253 |
-
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
|
254 |
-
pipe.enable_vae_slicing()
|
255 |
-
pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)
|
256 |
|
257 |
-
mp.set_start_method("spawn", force=True)
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
# MULTI-LANGUAGE IMAGE GENERATOR
|
263 |
-
""")
|
264 |
-
with gr.Row():
|
265 |
-
img = gr.Image(label="STATIC PHOTO",show_label=True,container=True,type="pil")
|
266 |
-
with gr.Row():
|
267 |
-
prompt = gr.Textbox(
|
268 |
-
elem_id="prompt",
|
269 |
-
placeholder="INCLUDE",
|
270 |
-
container=False,
|
271 |
-
max_lines=1
|
272 |
-
)
|
273 |
-
with gr.Row():
|
274 |
-
prompt2 = gr.Textbox(
|
275 |
-
elem_id="prompt2",
|
276 |
-
placeholder="EXCLUDE",
|
277 |
-
container=False,
|
278 |
-
max_lines=1
|
279 |
-
)
|
280 |
-
with gr.Row():
|
281 |
-
motion = gr.Dropdown(
|
282 |
-
label='CAMERA',
|
283 |
-
show_label=True,
|
284 |
-
container=True,
|
285 |
-
choices=[
|
286 |
-
("(No Effect)", ""),
|
287 |
-
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
|
288 |
-
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
|
289 |
-
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
|
290 |
-
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
|
291 |
-
("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
|
292 |
-
("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
|
293 |
-
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
|
294 |
-
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
|
295 |
-
],
|
296 |
-
value="",
|
297 |
-
interactive=True
|
298 |
-
)
|
299 |
-
with gr.Row():
|
300 |
-
run_button = gr.Button("START",elem_classes="btn",scale=0)
|
301 |
-
with gr.Row():
|
302 |
-
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
|
303 |
-
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
|
304 |
-
|
305 |
-
gr.on(
|
306 |
-
triggers=[run_button.click, prompt.submit, prompt2.submit],
|
307 |
-
fn=main,inputs=[img,motion,prompt,prompt2,*result],outputs=result
|
308 |
-
)
|
309 |
-
demo.queue().launch()
|
|
|
42 |
run("python -m pip install --upgrade pip")
|
43 |
run("pip install -r req.txt")
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
last_motion=None
|
46 |
dtype = torch.float16
|
47 |
result=[]
|
|
|
103 |
}
|
104 |
"""
|
105 |
|
106 |
+
@njit(cache=True,nopython=True,parallel=True)
|
107 |
+
def deps():
|
108 |
+
try:
|
109 |
+
import spaces
|
110 |
+
import torch
|
111 |
+
import gradio as gr
|
112 |
+
import numpy as np
|
113 |
+
from lxml.html import fromstring
|
114 |
+
#from transformers import pipeline
|
115 |
+
from torch import multiprocessing as mp, nn
|
116 |
+
#from torch.multiprocessing import Pool
|
117 |
+
#from pathos.multiprocessing import ProcessPool as Pool
|
118 |
+
#from pathos.threading import ThreadPool as Pool
|
119 |
+
#from diffusers.pipelines.flux import FluxPipeline
|
120 |
+
from diffusers.utils import export_to_gif, load_image
|
121 |
+
from diffusers.models.modeling_utils import ModelMixin
|
122 |
+
from huggingface_hub import hf_hub_download
|
123 |
+
from safetensors.torch import load_file, save_file
|
124 |
+
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
|
125 |
+
#import jax
|
126 |
+
#import jax.numpy as jnp
|
127 |
+
from pyina.launchers import TorqueMpiPool as Pool
|
128 |
+
from numba import jit,njit
|
129 |
+
except Exception as e:
|
130 |
+
pass
|
131 |
+
|
132 |
+
@njit(cache=True,nopython=True,parallel=True)
|
133 |
def translate(text,lang):
|
134 |
if text == None or lang == None:
|
135 |
return ""
|
|
|
171 |
print(ret)
|
172 |
return ret
|
173 |
|
174 |
+
@njit(cache=True,nopython=True,parallel=True)
|
175 |
def generate_random_string(length):
|
176 |
characters = string.ascii_letters + string.digits
|
177 |
return ''.join(random.choice(characters) for _ in range(length))
|
178 |
|
179 |
+
#@spaces.GPU(duration=65)
|
180 |
+
@njit(cache=True,nopython=True,parallel=True)
|
181 |
def Piper(image,positive,negative,motion):
|
182 |
global last_motion
|
183 |
global ip_loaded
|
|
|
214 |
num_frames=(fps*time)
|
215 |
)
|
216 |
|
217 |
+
@njit(cache=True,nopython=True,parallel=True)
|
218 |
def infer(pm):
|
219 |
print("infer: started")
|
220 |
|
|
|
236 |
export_to_gif(out.frames[0],name,fps=fps)
|
237 |
return name
|
238 |
|
239 |
+
@njit(cache=True,nopython=True,parallel=True)
|
240 |
+
def handle(i,m,p1,p2,*result):
|
241 |
+
p1_en = translate(p1,"english")
|
242 |
+
p2_en = translate(p2,"english")
|
243 |
+
pm = {"p":p1_en,"n":p2_en,"m":m,"i":i}
|
244 |
+
ln = len(result)
|
245 |
+
rng = list(range(ln))
|
246 |
+
arr = [pm for _ in rng]
|
247 |
+
#with Pool(f'{ ln }:ppn=2', queue='productionQ', timelimit='5:00:00', workdir='.') as pool:
|
248 |
+
#return pool.map(infer,arr)
|
249 |
+
ret = []
|
250 |
+
ret.append(infer,pm) for _ in range(ln)
|
251 |
+
return ret
|
252 |
|
253 |
+
@njit(cache=True,nopython=True,parallel=True)
|
254 |
+
def ui():
|
255 |
+
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
|
256 |
+
with gr.Column(elem_id="col-container"):
|
257 |
+
gr.Markdown(f"""
|
258 |
+
# MULTI-LANGUAGE IMAGE GENERATOR
|
259 |
+
""")
|
260 |
+
with gr.Row():
|
261 |
+
img = gr.Image(label="STATIC PHOTO",show_label=True,container=True,type="pil")
|
262 |
+
with gr.Row():
|
263 |
+
prompt = gr.Textbox(
|
264 |
+
elem_id="prompt",
|
265 |
+
placeholder="INCLUDE",
|
266 |
+
container=False,
|
267 |
+
max_lines=1
|
268 |
+
)
|
269 |
+
with gr.Row():
|
270 |
+
prompt2 = gr.Textbox(
|
271 |
+
elem_id="prompt2",
|
272 |
+
placeholder="EXCLUDE",
|
273 |
+
container=False,
|
274 |
+
max_lines=1
|
275 |
+
)
|
276 |
+
with gr.Row():
|
277 |
+
motion = gr.Dropdown(
|
278 |
+
label='CAMERA',
|
279 |
+
show_label=True,
|
280 |
+
container=True,
|
281 |
+
choices=[
|
282 |
+
("(No Effect)", ""),
|
283 |
+
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
|
284 |
+
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
|
285 |
+
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
|
286 |
+
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
|
287 |
+
("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
|
288 |
+
("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
|
289 |
+
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
|
290 |
+
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
|
291 |
+
],
|
292 |
+
value="",
|
293 |
+
interactive=True
|
294 |
+
)
|
295 |
+
with gr.Row():
|
296 |
+
run_button = gr.Button("START",elem_classes="btn",scale=0)
|
297 |
+
with gr.Row():
|
298 |
+
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
|
299 |
+
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
|
300 |
+
|
301 |
+
gr.on(
|
302 |
+
triggers=[run_button.click, prompt.submit, prompt2.submit],
|
303 |
+
fn=handle,inputs=[img,motion,prompt,prompt2,*result],outputs=result
|
304 |
+
)
|
305 |
+
demo.queue().launch()
|
306 |
+
|
307 |
+
@njit(cache=True,nopython=True,parallel=True)
|
308 |
+
def pre():
|
309 |
+
global pipe
|
310 |
|
311 |
+
pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
312 |
+
pipe.scheduler = DDIMScheduler(
|
313 |
clip_sample=False,
|
314 |
beta_start=0.00085,
|
315 |
beta_end=0.012,
|
316 |
beta_schedule="linear",
|
317 |
timestep_spacing="trailing",
|
318 |
steps_offset=1
|
319 |
+
)
|
320 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
|
321 |
+
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
|
322 |
+
pipe.enable_vae_slicing()
|
323 |
+
pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)
|
324 |
|
325 |
+
mp.set_start_method("spawn", force=True)
|
326 |
|
327 |
+
deps()
|
328 |
+
pre()
|
329 |
+
ui()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|