Spaces:
Running
Running
Yaron Koresh
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -558,24 +558,45 @@ def summarize(
|
|
558 |
text, max_len=20, min_len=10
|
559 |
):
|
560 |
log(f'CALL summarize')
|
561 |
-
|
562 |
-
|
563 |
-
|
|
|
|
|
564 |
return text
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
579 |
log(f'RET summarize with summary as {summary}')
|
580 |
return summary
|
581 |
|
@@ -633,6 +654,64 @@ def all_pipes(pos,neg,artist,song):
|
|
633 |
|
634 |
return imgs
|
635 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
636 |
def translate(txt,to_lang="en",from_lang=False):
|
637 |
log(f'CALL translate')
|
638 |
if not from_lang:
|
@@ -640,12 +719,13 @@ def translate(txt,to_lang="en",from_lang=False):
|
|
640 |
if(from_lang == to_lang):
|
641 |
log(f'RET translate with txt as {txt}')
|
642 |
return txt
|
643 |
-
|
644 |
-
|
645 |
ret = ""
|
646 |
-
for index in
|
647 |
-
chunk =
|
648 |
-
|
|
|
649 |
toks = tokenizer.decode(gen[0], skip_special_tokens=True)
|
650 |
ret = ret + ("" if ret == "" else " ") + toks
|
651 |
log(f'RET translate with ret as {ret}')
|
|
|
558 |
text, max_len=20, min_len=10
|
559 |
):
|
560 |
log(f'CALL summarize')
|
561 |
+
|
562 |
+
words = text.split()
|
563 |
+
|
564 |
+
if get_tensor_length(words) < 5:
|
565 |
+
print("Summarization Error: Text is too short, 5 words minimum!")
|
566 |
return text
|
567 |
+
|
568 |
+
prefix = "summarize: "
|
569 |
+
ret = ""
|
570 |
+
|
571 |
+
for index in math.ceil( len(words) / 512 ):
|
572 |
+
|
573 |
+
chunk = " ".join(words[ index*512:(index+1)*512 ])
|
574 |
+
inputs = tokenizer.encode( prefix + chunk, return_tensors="pt", max_length=float('inf'), truncation=False)
|
575 |
+
|
576 |
+
while get_tensor_length(inputs) > max_len:
|
577 |
+
|
578 |
+
inputs = model.generate(
|
579 |
+
inputs,
|
580 |
+
length_penalty=2.0,
|
581 |
+
num_beams=4,
|
582 |
+
early_stopping=True,
|
583 |
+
max_length=max( get_tensor_length(inputs) // 4 , max_len ),
|
584 |
+
min_length=min_len
|
585 |
+
)
|
586 |
+
|
587 |
+
toks = tokenizer.decode(inputs[0], skip_special_tokens=True)
|
588 |
+
ret = ret + ("" if ret == "" else " ") + toks
|
589 |
+
|
590 |
+
inputs = tokenizer.encode( prefix + ret, return_tensors="pt", max_length=float('inf'), truncation=False)
|
591 |
+
gen = model.generate(
|
592 |
+
inputs,
|
593 |
+
length_penalty=1.0,
|
594 |
+
num_beams=4,
|
595 |
+
early_stopping=True,
|
596 |
+
max_length=max_len,
|
597 |
+
min_length=min_len
|
598 |
+
)
|
599 |
+
summary = tokenizer.decode(gen[0], skip_special_tokens=True)
|
600 |
log(f'RET summarize with summary as {summary}')
|
601 |
return summary
|
602 |
|
|
|
654 |
|
655 |
return imgs
|
656 |
|
657 |
+
language_codes = {
|
658 |
+
"af": "Afrikaans",
|
659 |
+
"ar": "Arabic",
|
660 |
+
"bg": "Bulgarian",
|
661 |
+
"bn": "Bengali",
|
662 |
+
"ca": "Catalan",
|
663 |
+
"cs": "Czech",
|
664 |
+
"cy": "Welsh",
|
665 |
+
"da": "Danish",
|
666 |
+
"de": "German",
|
667 |
+
"el": "Greek",
|
668 |
+
"en": "English",
|
669 |
+
"es": "Spanish",
|
670 |
+
"et": "Estonian",
|
671 |
+
"fa": "Persian (Farsi)",
|
672 |
+
"fi": "Finnish",
|
673 |
+
"fr": "French",
|
674 |
+
"gu": "Gujarati",
|
675 |
+
"he": "Hebrew",
|
676 |
+
"hi": "Hindi",
|
677 |
+
"hr": "Croatian",
|
678 |
+
"hu": "Hungarian",
|
679 |
+
"id": "Indonesian",
|
680 |
+
"it": "Italian",
|
681 |
+
"ja": "Japanese",
|
682 |
+
"kn": "Kannada",
|
683 |
+
"ko": "Korean",
|
684 |
+
"lt": "Lithuanian",
|
685 |
+
"lv": "Latvian",
|
686 |
+
"mk": "Macedonian",
|
687 |
+
"ml": "Malayalam",
|
688 |
+
"mr": "Marathi",
|
689 |
+
"ne": "Nepali",
|
690 |
+
"nl": "Dutch",
|
691 |
+
"no": "Norwegian",
|
692 |
+
"pa": "Punjabi",
|
693 |
+
"pl": "Polish",
|
694 |
+
"pt": "Portuguese",
|
695 |
+
"ro": "Romanian",
|
696 |
+
"ru": "Russian",
|
697 |
+
"sk": "Slovak",
|
698 |
+
"sl": "Slovenian",
|
699 |
+
"so": "Somali",
|
700 |
+
"sq": "Albanian",
|
701 |
+
"sv": "Swedish",
|
702 |
+
"sw": "Swahili",
|
703 |
+
"ta": "Tamil",
|
704 |
+
"te": "Telugu",
|
705 |
+
"th": "Thai",
|
706 |
+
"tl": "Tagalog (Filipino)",
|
707 |
+
"tr": "Turkish",
|
708 |
+
"uk": "Ukrainian",
|
709 |
+
"ur": "Urdu",
|
710 |
+
"vi": "Vietnamese",
|
711 |
+
"zh-cn": "Chinese (Simplified)",
|
712 |
+
"zh-tw": "Chinese (Traditional)",
|
713 |
+
}
|
714 |
+
|
715 |
def translate(txt,to_lang="en",from_lang=False):
|
716 |
log(f'CALL translate')
|
717 |
if not from_lang:
|
|
|
719 |
if(from_lang == to_lang):
|
720 |
log(f'RET translate with txt as {txt}')
|
721 |
return txt
|
722 |
+
prefix = f"translate {language_codes[from_lang]} to {language_codes[to_lang]}: "
|
723 |
+
words = txt.split()
|
724 |
ret = ""
|
725 |
+
for index in math.ceil( len(words) / 512 ):
|
726 |
+
chunk = " ".join(words[ index*512:(index+1)*512 ])
|
727 |
+
inputs = tokenizer.encode(prefix+chunk, return_tensors="pt", max_length=float('inf'), truncation=False)
|
728 |
+
gen = model.generate(chunk,input)
|
729 |
toks = tokenizer.decode(gen[0], skip_special_tokens=True)
|
730 |
ret = ret + ("" if ret == "" else " ") + toks
|
731 |
log(f'RET translate with ret as {ret}')
|