File size: 46,913 Bytes
2467ec6
 
 
24dd25f
2467ec6
 
 
 
 
 
 
 
 
 
 
9cc2d55
2467ec6
 
9cc2d55
2467ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24dd25f
 
2467ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24dd25f
 
2467ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24dd25f
 
2467ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24dd25f
 
 
2467ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0e2cb7
 
2467ec6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
"""
VibeVoice Gradio Demo - High-Quality Dialogue Generation Interface with Streaming Support
"""
import spaces
import argparse
import json
import os
import sys
import tempfile
import time
from pathlib import Path
from typing import List, Dict, Any, Iterator
from datetime import datetime
import threading
import numpy as np
import gradio as gr
import librosa
import soundfile as sf
import torch
import os
import traceback

from vibevoice.modular.configuration_vibevoice import VibeVoiceConfig
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
from vibevoice.modular.streamer import AudioStreamer
from transformers.utils import logging
from transformers import set_seed

logging.set_verbosity_info()
logger = logging.get_logger(__name__)


class VibeVoiceDemo:
    def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5):
        """Initialize the VibeVoice demo with model loading."""
        self.model_path = model_path
        self.device = device
        self.inference_steps = inference_steps
        self.is_generating = False  # Track generation state
        self.stop_generation = False  # Flag to stop generation
        self.current_streamer = None  # Track current audio streamer
        self.load_model()
        self.setup_voice_presets()
        self.load_example_scripts()  # Load example scripts

    @spaces.GPU
    def load_model(self):
        """Load the VibeVoice model and processor."""
        print(f"Loading processor & model from {self.model_path}")
        
        # Load processor
        self.processor = VibeVoiceProcessor.from_pretrained(
            self.model_path,
        )
        
        # Load model
        self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
            self.model_path,
            torch_dtype=torch.bfloat16,
            device_map='cuda',
            attn_implementation="flash_attention_2",
        )
        self.model.eval()
        
        # Use SDE solver by default
        self.model.model.noise_scheduler = self.model.model.noise_scheduler.from_config(
            self.model.model.noise_scheduler.config, 
            algorithm_type='sde-dpmsolver++',
            beta_schedule='squaredcos_cap_v2'
        )
        self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
        
        if hasattr(self.model.model, 'language_model'):
            print(f"Language model attention: {self.model.model.language_model.config._attn_implementation}")
    
    def setup_voice_presets(self):
        """Setup voice presets by scanning the voices directory."""
        voices_dir = os.path.join(os.path.dirname(__file__), "voices")
        
        # Check if voices directory exists
        if not os.path.exists(voices_dir):
            print(f"Warning: Voices directory not found at {voices_dir}")
            self.voice_presets = {}
            self.available_voices = {}
            return
        
        # Scan for all WAV files in the voices directory
        self.voice_presets = {}
        
        # Get all .wav files in the voices directory
        wav_files = [f for f in os.listdir(voices_dir) 
                    if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac')) and os.path.isfile(os.path.join(voices_dir, f))]
        
        # Create dictionary with filename (without extension) as key
        for wav_file in wav_files:
            # Remove .wav extension to get the name
            name = os.path.splitext(wav_file)[0]
            # Create full path
            full_path = os.path.join(voices_dir, wav_file)
            self.voice_presets[name] = full_path
        
        # Sort the voice presets alphabetically by name for better UI
        self.voice_presets = dict(sorted(self.voice_presets.items()))
        
        # Filter out voices that don't exist (this is now redundant but kept for safety)
        self.available_voices = {
            name: path for name, path in self.voice_presets.items()
            if os.path.exists(path)
        }
        
        if not self.available_voices:
            raise gr.Error("No voice presets found. Please add .wav files to the demo/voices directory.")
        
        print(f"Found {len(self.available_voices)} voice files in {voices_dir}")
        print(f"Available voices: {', '.join(self.available_voices.keys())}")
    
    def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
        """Read and preprocess audio file."""
        try:
            wav, sr = sf.read(audio_path)
            if len(wav.shape) > 1:
                wav = np.mean(wav, axis=1)
            if sr != target_sr:
                wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
            return wav
        except Exception as e:
            print(f"Error reading audio {audio_path}: {e}")
            return np.array([])

    @spaces.GPU
    def generate_podcast_streaming(self, 
                                 num_speakers: int,
                                 script: str,
                                 speaker_1: str = None,
                                 speaker_2: str = None,
                                 speaker_3: str = None,
                                 speaker_4: str = None,
                                 cfg_scale: float = 1.3) -> Iterator[tuple]:
        try:
            # Reset stop flag and set generating state
            self.stop_generation = False
            self.is_generating = True
            
            # Validate inputs
            if not script.strip():
                self.is_generating = False
                raise gr.Error("Error: Please provide a script.")
            
            if num_speakers < 1 or num_speakers > 4:
                self.is_generating = False
                raise gr.Error("Error: Number of speakers must be between 1 and 4.")
            
            # Collect selected speakers
            selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
            
            # Validate speaker selections
            for i, speaker in enumerate(selected_speakers):
                if not speaker or speaker not in self.available_voices:
                    self.is_generating = False
                    raise gr.Error(f"Error: Please select a valid speaker for Speaker {i+1}.")
            
            # Build initial log
            log = f"πŸŽ™οΈ Generating podcast with {num_speakers} speakers\n"
            log += f"πŸ“Š Parameters: CFG Scale={cfg_scale}, Inference Steps={self.inference_steps}\n"
            log += f"🎭 Speakers: {', '.join(selected_speakers)}\n"
            
            # Check for stop signal
            if self.stop_generation:
                self.is_generating = False
                yield None, "πŸ›‘ Generation stopped by user", gr.update(visible=False)
                return
            
            # Load voice samples
            voice_samples = []
            for speaker_name in selected_speakers:
                audio_path = self.available_voices[speaker_name]
                audio_data = self.read_audio(audio_path)
                if len(audio_data) == 0:
                    self.is_generating = False
                    raise gr.Error(f"Error: Failed to load audio for {speaker_name}")
                voice_samples.append(audio_data)
            
            # log += f"βœ… Loaded {len(voice_samples)} voice samples\n"
            
            # Check for stop signal
            if self.stop_generation:
                self.is_generating = False
                yield None, "πŸ›‘ Generation stopped by user", gr.update(visible=False)
                return
            
            # Parse script to assign speaker ID's
            lines = script.strip().split('\n')
            formatted_script_lines = []
            
            for line in lines:
                line = line.strip()
                if not line:
                    continue
                    
                # Check if line already has speaker format
                if line.startswith('Speaker ') and ':' in line:
                    formatted_script_lines.append(line)
                else:
                    # Auto-assign to speakers in rotation
                    speaker_id = len(formatted_script_lines) % num_speakers
                    formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
            
            formatted_script = '\n'.join(formatted_script_lines)
            log += f"πŸ“ Formatted script with {len(formatted_script_lines)} turns\n\n"
            log += "πŸ”„ Processing with VibeVoice (streaming mode)...\n"
            
            # Check for stop signal before processing
            if self.stop_generation:
                self.is_generating = False
                yield None, "πŸ›‘ Generation stopped by user", gr.update(visible=False)
                return
            
            start_time = time.time()
            
            inputs = self.processor(
                text=[formatted_script],
                voice_samples=[voice_samples],
                padding=True,
                return_tensors="pt",
                return_attention_mask=True,
            )
            
            # Create audio streamer
            audio_streamer = AudioStreamer(
                batch_size=1,
                stop_signal=None,
                timeout=None
            )
            
            # Store current streamer for potential stopping
            self.current_streamer = audio_streamer
            
            # Start generation in a separate thread
            generation_thread = threading.Thread(
                target=self._generate_with_streamer,
                args=(inputs, cfg_scale, audio_streamer)
            )
            generation_thread.start()
            
            # Wait for generation to actually start producing audio
            time.sleep(1)  # Reduced from 3 to 1 second

            # Check for stop signal after thread start
            if self.stop_generation:
                audio_streamer.end()
                generation_thread.join(timeout=5.0)  # Wait up to 5 seconds for thread to finish
                self.is_generating = False
                yield None, "πŸ›‘ Generation stopped by user", gr.update(visible=False)
                return

            # Collect audio chunks as they arrive
            sample_rate = 24000
            all_audio_chunks = []  # For final statistics
            pending_chunks = []  # Buffer for accumulating small chunks
            chunk_count = 0
            last_yield_time = time.time()
            min_yield_interval = 15 # Yield every 15 seconds
            min_chunk_size = sample_rate * 30 # At least 2 seconds of audio
            
            # Get the stream for the first (and only) sample
            audio_stream = audio_streamer.get_stream(0)
            
            has_yielded_audio = False
            has_received_chunks = False  # Track if we received any chunks at all
            
            for audio_chunk in audio_stream:
                # Check for stop signal in the streaming loop
                if self.stop_generation:
                    audio_streamer.end()
                    break
                    
                chunk_count += 1
                has_received_chunks = True  # Mark that we received at least one chunk
                
                # Convert tensor to numpy
                if torch.is_tensor(audio_chunk):
                    # Convert bfloat16 to float32 first, then to numpy
                    if audio_chunk.dtype == torch.bfloat16:
                        audio_chunk = audio_chunk.float()
                    audio_np = audio_chunk.cpu().numpy().astype(np.float32)
                else:
                    audio_np = np.array(audio_chunk, dtype=np.float32)
                
                # Ensure audio is 1D and properly normalized
                if len(audio_np.shape) > 1:
                    audio_np = audio_np.squeeze()
                
                # Convert to 16-bit for Gradio
                audio_16bit = convert_to_16_bit_wav(audio_np)
                
                # Store for final statistics
                all_audio_chunks.append(audio_16bit)
                
                # Add to pending chunks buffer
                pending_chunks.append(audio_16bit)
                
                # Calculate pending audio size
                pending_audio_size = sum(len(chunk) for chunk in pending_chunks)
                current_time = time.time()
                time_since_last_yield = current_time - last_yield_time
                
                # Decide whether to yield
                should_yield = False
                if not has_yielded_audio and pending_audio_size >= min_chunk_size:
                    # First yield: wait for minimum chunk size
                    should_yield = True
                    has_yielded_audio = True
                elif has_yielded_audio and (pending_audio_size >= min_chunk_size or time_since_last_yield >= min_yield_interval):
                    # Subsequent yields: either enough audio or enough time has passed
                    should_yield = True
                
                if should_yield and pending_chunks:
                    # Concatenate and yield only the new audio chunks
                    new_audio = np.concatenate(pending_chunks)
                    new_duration = len(new_audio) / sample_rate
                    total_duration = sum(len(chunk) for chunk in all_audio_chunks) / sample_rate
                    
                    log_update = log + f"🎡 Streaming: {total_duration:.1f}s generated (chunk {chunk_count})\n"
                    
                    # Yield streaming audio chunk and keep complete_audio as None during streaming
                    yield (sample_rate, new_audio), None, log_update, gr.update(visible=True)
                    
                    # Clear pending chunks after yielding
                    pending_chunks = []
                    last_yield_time = current_time
            
            # Yield any remaining chunks
            if pending_chunks:
                final_new_audio = np.concatenate(pending_chunks)
                total_duration = sum(len(chunk) for chunk in all_audio_chunks) / sample_rate
                log_update = log + f"🎡 Streaming final chunk: {total_duration:.1f}s total\n"
                yield (sample_rate, final_new_audio), None, log_update, gr.update(visible=True)
                has_yielded_audio = True  # Mark that we yielded audio
            
            # Wait for generation to complete (with timeout to prevent hanging)
            generation_thread.join(timeout=5.0)  # Increased timeout to 5 seconds

            # If thread is still alive after timeout, force end
            if generation_thread.is_alive():
                print("Warning: Generation thread did not complete within timeout")
                audio_streamer.end()
                generation_thread.join(timeout=5.0)

            # Clean up
            self.current_streamer = None
            self.is_generating = False
            
            generation_time = time.time() - start_time
            
            # Check if stopped by user
            if self.stop_generation:
                yield None, None, "πŸ›‘ Generation stopped by user", gr.update(visible=False)
                return
            
            # Debug logging
            # print(f"Debug: has_received_chunks={has_received_chunks}, chunk_count={chunk_count}, all_audio_chunks length={len(all_audio_chunks)}")
            
            # Check if we received any chunks but didn't yield audio
            if has_received_chunks and not has_yielded_audio and all_audio_chunks:
                # We have chunks but didn't meet the yield criteria, yield them now
                complete_audio = np.concatenate(all_audio_chunks)
                final_duration = len(complete_audio) / sample_rate
                
                final_log = log + f"⏱️ Generation completed in {generation_time:.2f} seconds\n"
                final_log += f"🎡 Final audio duration: {final_duration:.2f} seconds\n"
                final_log += f"πŸ“Š Total chunks: {chunk_count}\n"
                final_log += "✨ Generation successful! Complete audio is ready.\n"
                final_log += "πŸ’‘ Not satisfied? You can regenerate or adjust the CFG scale for different results."
                
                # Yield the complete audio
                yield None, (sample_rate, complete_audio), final_log, gr.update(visible=False)
                return
            
            if not has_received_chunks:
                error_log = log + f"\n❌ Error: No audio chunks were received from the model. Generation time: {generation_time:.2f}s"
                yield None, None, error_log, gr.update(visible=False)
                return
            
            if not has_yielded_audio:
                error_log = log + f"\n❌ Error: Audio was generated but not streamed. Chunk count: {chunk_count}"
                yield None, None, error_log, gr.update(visible=False)
                return

            # Prepare the complete audio
            if all_audio_chunks:
                complete_audio = np.concatenate(all_audio_chunks)
                final_duration = len(complete_audio) / sample_rate
                
                final_log = log + f"⏱️ Generation completed in {generation_time:.2f} seconds\n"
                final_log += f"🎡 Final audio duration: {final_duration:.2f} seconds\n"
                final_log += f"πŸ“Š Total chunks: {chunk_count}\n"
                final_log += "✨ Generation successful! Complete audio is ready in the 'Complete Audio' tab.\n"
                final_log += "πŸ’‘ Not satisfied? You can regenerate or adjust the CFG scale for different results."
                
                # Final yield: Clear streaming audio and provide complete audio
                yield None, (sample_rate, complete_audio), final_log, gr.update(visible=False)
            else:
                final_log = log + "❌ No audio was generated."
                yield None, None, final_log, gr.update(visible=False)

        except gr.Error as e:
            # Handle Gradio-specific errors (like input validation)
            self.is_generating = False
            self.current_streamer = None
            error_msg = f"❌ Input Error: {str(e)}"
            print(error_msg)
            yield None, None, error_msg, gr.update(visible=False)
            
        except Exception as e:
            self.is_generating = False
            self.current_streamer = None
            error_msg = f"❌ An unexpected error occurred: {str(e)}"
            print(error_msg)
            import traceback
            traceback.print_exc()
            yield None, None, error_msg, gr.update(visible=False)

    @spaces.GPU
    def _generate_with_streamer(self, inputs, cfg_scale, audio_streamer):
        """Helper method to run generation with streamer in a separate thread."""
        try:
            # Check for stop signal before starting generation
            if self.stop_generation:
                audio_streamer.end()
                return
                
            # Define a stop check function that can be called from generate
            def check_stop_generation():
                return self.stop_generation
                
            outputs = self.model.generate(
                **inputs,
                max_new_tokens=None,
                cfg_scale=cfg_scale,
                tokenizer=self.processor.tokenizer,
                generation_config={
                    'do_sample': False,
                },
                audio_streamer=audio_streamer,
                stop_check_fn=check_stop_generation,  # Pass the stop check function
                verbose=False,  # Disable verbose in streaming mode
                refresh_negative=True,
            )
            
        except Exception as e:
            print(f"Error in generation thread: {e}")
            traceback.print_exc()
            # Make sure to end the stream on error
            audio_streamer.end()
    
    def stop_audio_generation(self):
        """Stop the current audio generation process."""
        self.stop_generation = True
        if self.current_streamer is not None:
            try:
                self.current_streamer.end()
            except Exception as e:
                print(f"Error stopping streamer: {e}")
        print("πŸ›‘ Audio generation stop requested")
    
    def load_example_scripts(self):
        """Load example scripts from the text_examples directory."""
        examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
        self.example_scripts = []
        
        # Check if text_examples directory exists
        if not os.path.exists(examples_dir):
            print(f"Warning: text_examples directory not found at {examples_dir}")
            return
        
        # Get all .txt files in the text_examples directory
        txt_files = sorted([f for f in os.listdir(examples_dir) 
                          if f.lower().endswith('.txt') and os.path.isfile(os.path.join(examples_dir, f))])
        
        for txt_file in txt_files:
            file_path = os.path.join(examples_dir, txt_file)
            
            import re
            # Check if filename contains a time pattern like "45min", "90min", etc.
            time_pattern = re.search(r'(\d+)min', txt_file.lower())
            if time_pattern:
                minutes = int(time_pattern.group(1))
                if minutes > 15:
                    print(f"Skipping {txt_file}: duration {minutes} minutes exceeds 15-minute limit")
                    continue

            try:
                with open(file_path, 'r', encoding='utf-8') as f:
                    script_content = f.read().strip()
                
                # Remove empty lines and lines with only whitespace
                script_content = '\n'.join(line for line in script_content.split('\n') if line.strip())
                
                if not script_content:
                    continue
                
                # Parse the script to determine number of speakers
                num_speakers = self._get_num_speakers_from_script(script_content)
                
                # Add to examples list as [num_speakers, script_content]
                self.example_scripts.append([num_speakers, script_content])
                print(f"Loaded example: {txt_file} with {num_speakers} speakers")
                
            except Exception as e:
                print(f"Error loading example script {txt_file}: {e}")
        
        if self.example_scripts:
            print(f"Successfully loaded {len(self.example_scripts)} example scripts")
        else:
            print("No example scripts were loaded")
    
    def _get_num_speakers_from_script(self, script: str) -> int:
        """Determine the number of unique speakers in a script."""
        import re
        speakers = set()
        
        lines = script.strip().split('\n')
        for line in lines:
            # Use regex to find speaker patterns
            match = re.match(r'^Speaker\s+(\d+)\s*:', line.strip(), re.IGNORECASE)
            if match:
                speaker_id = int(match.group(1))
                speakers.add(speaker_id)
        
        # If no speakers found, default to 1
        if not speakers:
            return 1
        
        # Return the maximum speaker ID + 1 (assuming 0-based indexing)
        # or the count of unique speakers if they're 1-based
        max_speaker = max(speakers)
        min_speaker = min(speakers)
        
        if min_speaker == 0:
            return max_speaker + 1
        else:
            # Assume 1-based indexing, return the count
            return len(speakers)
    

def create_demo_interface(demo_instance: VibeVoiceDemo):
    """Create the Gradio interface with streaming support."""
    
    # Custom CSS for high-end aesthetics with lighter theme
    custom_css = """
    /* Modern light theme with gradients */
    .gradio-container {
        background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
        font-family: 'SF Pro Display', -apple-system, BlinkMacSystemFont, sans-serif;
    }
    
    /* Header styling */
    .main-header {
        background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
        padding: 2rem;
        border-radius: 20px;
        margin-bottom: 2rem;
        text-align: center;
        box-shadow: 0 10px 40px rgba(102, 126, 234, 0.3);
    }
    
    .main-header h1 {
        color: white;
        font-size: 2.5rem;
        font-weight: 700;
        margin: 0;
        text-shadow: 0 2px 4px rgba(0,0,0,0.3);
    }
    
    .main-header p {
        color: rgba(255,255,255,0.9);
        font-size: 1.1rem;
        margin: 0.5rem 0 0 0;
    }
    
    /* Card styling */
    .settings-card, .generation-card {
        background: rgba(255, 255, 255, 0.8);
        backdrop-filter: blur(10px);
        border: 1px solid rgba(226, 232, 240, 0.8);
        border-radius: 16px;
        padding: 1.5rem;
        margin-bottom: 1rem;
        box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
    }
    
    /* Speaker selection styling */
    .speaker-grid {
        display: grid;
        gap: 1rem;
        margin-bottom: 1rem;
    }
    
    .speaker-item {
        background: linear-gradient(135deg, #e2e8f0 0%, #cbd5e1 100%);
        border: 1px solid rgba(148, 163, 184, 0.4);
        border-radius: 12px;
        padding: 1rem;
        color: #374151;
        font-weight: 500;
    }
    
    /* Streaming indicator */
    .streaming-indicator {
        display: inline-block;
        width: 10px;
        height: 10px;
        background: #22c55e;
        border-radius: 50%;
        margin-right: 8px;
        animation: pulse 1.5s infinite;
    }
    
    @keyframes pulse {
        0% { opacity: 1; transform: scale(1); }
        50% { opacity: 0.5; transform: scale(1.1); }
        100% { opacity: 1; transform: scale(1); }
    }
    
    /* Queue status styling */
    .queue-status {
        background: linear-gradient(135deg, #f0f9ff 0%, #e0f2fe 100%);
        border: 1px solid rgba(14, 165, 233, 0.3);
        border-radius: 8px;
        padding: 0.75rem;
        margin: 0.5rem 0;
        text-align: center;
        font-size: 0.9rem;
        color: #0369a1;
    }
    
    .generate-btn {
        background: linear-gradient(135deg, #059669 0%, #0d9488 100%);
        border: none;
        border-radius: 12px;
        padding: 1rem 2rem;
        color: white;
        font-weight: 600;
        font-size: 1.1rem;
        box-shadow: 0 4px 20px rgba(5, 150, 105, 0.4);
        transition: all 0.3s ease;
    }
    
    .generate-btn:hover {
        transform: translateY(-2px);
        box-shadow: 0 6px 25px rgba(5, 150, 105, 0.6);
    }
    
    .stop-btn {
        background: linear-gradient(135deg, #ef4444 0%, #dc2626 100%);
        border: none;
        border-radius: 12px;
        padding: 1rem 2rem;
        color: white;
        font-weight: 600;
        font-size: 1.1rem;
        box-shadow: 0 4px 20px rgba(239, 68, 68, 0.4);
        transition: all 0.3s ease;
    }
    
    .stop-btn:hover {
        transform: translateY(-2px);
        box-shadow: 0 6px 25px rgba(239, 68, 68, 0.6);
    }
    
    /* Audio player styling */
    .audio-output {
        background: linear-gradient(135deg, #f1f5f9 0%, #e2e8f0 100%);
        border-radius: 16px;
        padding: 1.5rem;
        border: 1px solid rgba(148, 163, 184, 0.3);
    }
    
    .complete-audio-section {
        margin-top: 1rem;
        padding: 1rem;
        background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%);
        border: 1px solid rgba(34, 197, 94, 0.3);
        border-radius: 12px;
    }
    
    /* Text areas */
    .script-input, .log-output {
        background: rgba(255, 255, 255, 0.9) !important;
        border: 1px solid rgba(148, 163, 184, 0.4) !important;
        border-radius: 12px !important;
        color: #1e293b !important;
        font-family: 'JetBrains Mono', monospace !important;
    }
    
    .script-input::placeholder {
        color: #64748b !important;
    }
    
    /* Sliders */
    .slider-container {
        background: rgba(248, 250, 252, 0.8);
        border: 1px solid rgba(226, 232, 240, 0.6);
        border-radius: 8px;
        padding: 1rem;
        margin: 0.5rem 0;
    }
    
    /* Labels and text */
    .gradio-container label {
        color: #374151 !important;
        font-weight: 600 !important;
    }
    
    .gradio-container .markdown {
        color: #1f2937 !important;
    }
    
    /* Responsive design */
    @media (max-width: 768px) {
        .main-header h1 { font-size: 2rem; }
        .settings-card, .generation-card { padding: 1rem; }
    }
    
    /* Random example button styling - more subtle professional color */
    .random-btn {
        background: linear-gradient(135deg, #64748b 0%, #475569 100%);
        border: none;
        border-radius: 12px;
        padding: 1rem 1.5rem;
        color: white;
        font-weight: 600;
        font-size: 1rem;
        box-shadow: 0 4px 20px rgba(100, 116, 139, 0.3);
        transition: all 0.3s ease;
        display: inline-flex;
        align-items: center;
        gap: 0.5rem;
    }
    
    .random-btn:hover {
        transform: translateY(-2px);
        box-shadow: 0 6px 25px rgba(100, 116, 139, 0.4);
        background: linear-gradient(135deg, #475569 0%, #334155 100%);
    }
    """
    
    with gr.Blocks(
        title="VibeVoice - AI Podcast Generator",
        css=custom_css,
        theme=gr.themes.Soft(
            primary_hue="blue",
            secondary_hue="purple",
            neutral_hue="slate",
        )
    ) as interface:
        
        # Header
        gr.HTML("""
        <div class="main-header">
            <h1>πŸŽ™οΈ Vibe Podcasting </h1>
            <p>Generating Long-form Multi-speaker AI Podcast with VibeVoice</p>
        </div>
        """)
        
        with gr.Row():
            # Left column - Settings
            with gr.Column(scale=1, elem_classes="settings-card"):
                gr.Markdown("### πŸŽ›οΈ **Podcast Settings**")
                
                # Number of speakers
                num_speakers = gr.Slider(
                    minimum=1,
                    maximum=4,
                    value=2,
                    step=1,
                    label="Number of Speakers",
                    elem_classes="slider-container"
                )
                
                # Speaker selection
                gr.Markdown("### 🎭 **Speaker Selection**")
                
                available_speaker_names = list(demo_instance.available_voices.keys())
                # default_speakers = available_speaker_names[:4] if len(available_speaker_names) >= 4 else available_speaker_names
                default_speakers = ['en-Alice_woman', 'en-Carter_man', 'en-Frank_man', 'en-Maya_woman']

                speaker_selections = []
                for i in range(4):
                    default_value = default_speakers[i] if i < len(default_speakers) else None
                    speaker = gr.Dropdown(
                        choices=available_speaker_names,
                        value=default_value,
                        label=f"Speaker {i+1}",
                        visible=(i < 2),  # Initially show only first 2 speakers
                        elem_classes="speaker-item"
                    )
                    speaker_selections.append(speaker)
                
                # Advanced settings
                gr.Markdown("### βš™οΈ **Advanced Settings**")
                
                # Sampling parameters (contains all generation settings)
                with gr.Accordion("Generation Parameters", open=False):
                    cfg_scale = gr.Slider(
                        minimum=1.0,
                        maximum=2.0,
                        value=1.3,
                        step=0.05,
                        label="CFG Scale (Guidance Strength)",
                        # info="Higher values increase adherence to text",
                        elem_classes="slider-container"
                    )
                
            # Right column - Generation
            with gr.Column(scale=2, elem_classes="generation-card"):
                gr.Markdown("### πŸ“ **Script Input**")
                
                script_input = gr.Textbox(
                    label="Conversation Script",
                    placeholder="""Enter your podcast script here. You can format it as:

Speaker 0: Welcome to our podcast today!
Speaker 1: Thanks for having me. I'm excited to discuss...

Or paste text directly and it will auto-assign speakers.""",
                    lines=12,
                    max_lines=20,
                    elem_classes="script-input"
                )
                
                # Button row with Random Example on the left and Generate on the right
                with gr.Row():
                    # Random example button (now on the left)
                    random_example_btn = gr.Button(
                        "🎲 Random Example",
                        size="lg",
                        variant="secondary",
                        elem_classes="random-btn",
                        scale=1  # Smaller width
                    )
                    
                    # Generate button (now on the right)
                    generate_btn = gr.Button(
                        "πŸš€ Generate Podcast",
                        size="lg",
                        variant="primary",
                        elem_classes="generate-btn",
                        scale=2  # Wider than random button
                    )
                
                # Stop button
                stop_btn = gr.Button(
                    "πŸ›‘ Stop Generation",
                    size="lg",
                    variant="stop",
                    elem_classes="stop-btn",
                    visible=False
                )
                
                # Streaming status indicator
                streaming_status = gr.HTML(
                    value="""
                    <div style="background: linear-gradient(135deg, #dcfce7 0%, #bbf7d0 100%); 
                                border: 1px solid rgba(34, 197, 94, 0.3); 
                                border-radius: 8px; 
                                padding: 0.75rem; 
                                margin: 0.5rem 0;
                                text-align: center;
                                font-size: 0.9rem;
                                color: #166534;">
                        <span class="streaming-indicator"></span>
                        <strong>LIVE STREAMING</strong> - Audio is being generated in real-time
                    </div>
                    """,
                    visible=False,
                    elem_id="streaming-status"
                )
                
                # Output section
                gr.Markdown("### 🎡 **Generated Podcast**")
                
                # Streaming audio output (outside of tabs for simpler handling)
                audio_output = gr.Audio(
                    label="Streaming Audio (Real-time)",
                    type="numpy",
                    elem_classes="audio-output",
                    streaming=True,  # Enable streaming mode
                    autoplay=True,
                    show_download_button=False,  # Explicitly show download button
                    visible=True
                )
                
                # Complete audio output (non-streaming)
                complete_audio_output = gr.Audio(
                    label="Complete Podcast (Download after generation)",
                    type="numpy",
                    elem_classes="audio-output complete-audio-section",
                    streaming=False,  # Non-streaming mode
                    autoplay=False,
                    show_download_button=True,  # Explicitly show download button
                    visible=False  # Initially hidden, shown when audio is ready
                )
                
                gr.Markdown("""
                *πŸ’‘ **Streaming**: Audio plays as it's being generated (may have slight pauses)  
                *πŸ’‘ **Complete Audio**: Will appear below after generation finishes*
                """)
                
                # Generation log
                log_output = gr.Textbox(
                    label="Generation Log",
                    lines=8,
                    max_lines=15,
                    interactive=False,
                    elem_classes="log-output"
                )
        
        def update_speaker_visibility(num_speakers):
            updates = []
            for i in range(4):
                updates.append(gr.update(visible=(i < num_speakers)))
            return updates
        
        num_speakers.change(
            fn=update_speaker_visibility,
            inputs=[num_speakers],
            outputs=speaker_selections
        )
        
        # Main generation function with streaming
        def generate_podcast_wrapper(num_speakers, script, *speakers_and_params):
            """Wrapper function to handle the streaming generation call."""
            try:
                # Extract speakers and parameters
                speakers = speakers_and_params[:4]  # First 4 are speaker selections
                cfg_scale = speakers_and_params[4]   # CFG scale
                
                # Clear outputs and reset visibility at start
                yield None, gr.update(value=None, visible=False), "πŸŽ™οΈ Starting generation...", gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
                
                # The generator will yield multiple times
                final_log = "Starting generation..."
                
                for streaming_audio, complete_audio, log, streaming_visible in demo_instance.generate_podcast_streaming(
                    num_speakers=int(num_speakers),
                    script=script,
                    speaker_1=speakers[0],
                    speaker_2=speakers[1],
                    speaker_3=speakers[2],
                    speaker_4=speakers[3],
                    cfg_scale=cfg_scale
                ):
                    final_log = log
                    
                    # Check if we have complete audio (final yield)
                    if complete_audio is not None:
                        # Final state: clear streaming, show complete audio
                        yield None, gr.update(value=complete_audio, visible=True), log, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
                    else:
                        # Streaming state: update streaming audio only
                        if streaming_audio is not None:
                            yield streaming_audio, gr.update(visible=False), log, streaming_visible, gr.update(visible=False), gr.update(visible=True)
                        else:
                            # No new audio, just update status
                            yield None, gr.update(visible=False), log, streaming_visible, gr.update(visible=False), gr.update(visible=True)

            except Exception as e:
                error_msg = f"❌ A critical error occurred in the wrapper: {str(e)}"
                print(error_msg)
                import traceback
                traceback.print_exc()
                # Reset button states on error
                yield None, gr.update(value=None, visible=False), error_msg, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
        
        def stop_generation_handler():
            """Handle stopping generation."""
            demo_instance.stop_audio_generation()
            # Return values for: log_output, streaming_status, generate_btn, stop_btn
            return "πŸ›‘ Generation stopped.", gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
        
        # Add a clear audio function
        def clear_audio_outputs():
            """Clear both audio outputs before starting new generation."""
            return None, gr.update(value=None, visible=False)

        # Connect generation button with streaming outputs
        generate_btn.click(
            fn=clear_audio_outputs,
            inputs=[],
            outputs=[audio_output, complete_audio_output],
            queue=False
        ).then(
            fn=generate_podcast_wrapper,
            inputs=[num_speakers, script_input] + speaker_selections + [cfg_scale],
            outputs=[audio_output, complete_audio_output, log_output, streaming_status, generate_btn, stop_btn],
            queue=True  # Enable Gradio's built-in queue
        )
        
        # Connect stop button
        stop_btn.click(
            fn=stop_generation_handler,
            inputs=[],
            outputs=[log_output, streaming_status, generate_btn, stop_btn],
            queue=False  # Don't queue stop requests
        ).then(
            # Clear both audio outputs after stopping
            fn=lambda: (None, None),
            inputs=[],
            outputs=[audio_output, complete_audio_output],
            queue=False
        )
        
        # Function to randomly select an example
        def load_random_example():
            """Randomly select and load an example script."""
            import random
            
            # Get available examples
            if hasattr(demo_instance, 'example_scripts') and demo_instance.example_scripts:
                example_scripts = demo_instance.example_scripts
            else:
                # Fallback to default
                example_scripts = [
                    [2, "Speaker 0: Welcome to our AI podcast demonstration!\nSpeaker 1: Thanks for having me. This is exciting!"]
                ]
            
            # Randomly select one
            if example_scripts:
                selected = random.choice(example_scripts)
                num_speakers_value = selected[0]
                script_value = selected[1]
                
                # Return the values to update the UI
                return num_speakers_value, script_value
            
            # Default values if no examples
            return 2, ""
        
        # Connect random example button
        random_example_btn.click(
            fn=load_random_example,
            inputs=[],
            outputs=[num_speakers, script_input],
            queue=False  # Don't queue this simple operation
        )
        
        # Add usage tips
        gr.Markdown("""
        ### πŸ’‘ **Usage Tips**
        
        - Click **πŸš€ Generate Podcast** to start audio generation
        - **Live Streaming** tab shows audio as it's generated (may have slight pauses)
        - **Complete Audio** tab provides the full, uninterrupted podcast after generation
        - During generation, you can click **πŸ›‘ Stop Generation** to interrupt the process
        - The streaming indicator shows real-time generation progress
        """)
        
        # Add example scripts
        gr.Markdown("### πŸ“š **Example Scripts**")
        
        # Use dynamically loaded examples if available, otherwise provide a default
        if hasattr(demo_instance, 'example_scripts') and demo_instance.example_scripts:
            example_scripts = demo_instance.example_scripts
        else:
            # Fallback to a simple default example if no scripts loaded
            example_scripts = [
                [1, "Speaker 1: Welcome to our AI podcast demonstration! This is a sample script showing how VibeVoice can generate natural-sounding speech."]
            ]
        
        gr.Examples(
            examples=example_scripts,
            inputs=[num_speakers, script_input],
            label="Try these example scripts:"
        )

    return interface


def convert_to_16_bit_wav(data):
    # Check if data is a tensor and move to cpu
    if torch.is_tensor(data):
        data = data.detach().cpu().numpy()
    
    # Ensure data is numpy array
    data = np.array(data)

    # Normalize to range [-1, 1] if it's not already
    if np.max(np.abs(data)) > 1.0:
        data = data / np.max(np.abs(data))
    
    # Scale to 16-bit integer range
    data = (data * 32767).astype(np.int16)
    return data


def parse_args():
    parser = argparse.ArgumentParser(description="VibeVoice Gradio Demo")
    parser.add_argument(
        "--model_path",
        type=str,
        default="/tmp/vibevoice-model",
        help="Path to the VibeVoice model directory",
    )
    parser.add_argument(
        "--device",
        type=str,
        default="cuda" if torch.cuda.is_available() else "cpu",
        help="Device for inference",
    )
    parser.add_argument(
        "--inference_steps",
        type=int,
        default=10,
        help="Number of inference steps for DDPM (not exposed to users)",
    )
    parser.add_argument(
        "--share",
        action="store_true",
        help="Share the demo publicly via Gradio",
    )
    parser.add_argument(
        "--port",
        type=int,
        default=7860,
        help="Port to run the demo on",
    )
    
    return parser.parse_args()


def main():
    """Main function to run the demo."""
    args = parse_args()
    
    set_seed(42)  # Set a fixed seed for reproducibility

    print("πŸŽ™οΈ Initializing VibeVoice Demo with Streaming Support...")
    
    # Initialize demo instance
    demo_instance = VibeVoiceDemo(
        model_path='microsoft/VibeVoice-1.5B',
        device='cuda',
        inference_steps=10
    )
    
    # Create interface
    interface = create_demo_interface(demo_instance)
    
    print(f"πŸš€ Launching demo on port {args.port}")
    print(f"πŸ“ Model path: {args.model_path}")
    print(f"🎭 Available voices: {len(demo_instance.available_voices)}")
    print(f"πŸ”΄ Streaming mode: ENABLED")
    print(f"πŸ”’ Session isolation: ENABLED")
    
    # Launch the interface
    try:
        interface.queue(
            max_size=20,  # Maximum queue size
        ).launch(
            show_error=True,
            show_api=False  # Hide API docs for cleaner interface
        )
    except KeyboardInterrupt:
        print("\nπŸ›‘ Shutting down gracefully...")
    except Exception as e:
        print(f"❌ Server error: {e}")
        raise


if __name__ == "__main__":
    main()