File size: 7,367 Bytes
c8448bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from functools import reduce
import math
import torch
from torch import nn
from torch.nn import functional as F

from torch.backends.cuda import sdp_kernel
from packaging import version

from dac.nn.layers import Snake1d

class ResidualBlock(nn.Module):
    def __init__(self, main, skip=None):
        super().__init__()
        self.main = nn.Sequential(*main)
        self.skip = skip if skip else nn.Identity()

    def forward(self, input):
        return self.main(input) + self.skip(input)

class ResConvBlock(ResidualBlock):
    def __init__(self, c_in, c_mid, c_out, is_last=False, kernel_size=5, conv_bias=True, use_snake=False):
        skip = None if c_in == c_out else nn.Conv1d(c_in, c_out, 1, bias=False)
        super().__init__([
            nn.Conv1d(c_in, c_mid, kernel_size, padding=kernel_size//2, bias=conv_bias),
            nn.GroupNorm(1, c_mid),
            Snake1d(c_mid) if use_snake else nn.GELU(),
            nn.Conv1d(c_mid, c_out, kernel_size, padding=kernel_size//2, bias=conv_bias),
            nn.GroupNorm(1, c_out) if not is_last else nn.Identity(),
            (Snake1d(c_out) if use_snake else nn.GELU()) if not is_last else nn.Identity(),
        ], skip)

class SelfAttention1d(nn.Module):
    def __init__(self, c_in, n_head=1, dropout_rate=0.):
        super().__init__()
        assert c_in % n_head == 0
        self.norm = nn.GroupNorm(1, c_in)
        self.n_head = n_head
        self.qkv_proj = nn.Conv1d(c_in, c_in * 3, 1)
        self.out_proj = nn.Conv1d(c_in, c_in, 1)
        self.dropout = nn.Dropout(dropout_rate, inplace=True)

        self.use_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')

        if not self.use_flash:
            return

        device_properties = torch.cuda.get_device_properties(torch.device('cuda'))

        if device_properties.major == 8 and device_properties.minor == 0:
            # Use flash attention for A100 GPUs
            self.sdp_kernel_config = (True, False, False)
        else:
            # Don't use flash attention for other GPUs
            self.sdp_kernel_config = (False, True, True)

    def forward(self, input):
        n, c, s = input.shape
        qkv = self.qkv_proj(self.norm(input))
        qkv = qkv.view(
            [n, self.n_head * 3, c // self.n_head, s]).transpose(2, 3)
        q, k, v = qkv.chunk(3, dim=1)
        scale = k.shape[3]**-0.25

        if self.use_flash:
            with sdp_kernel(*self.sdp_kernel_config):
                y = F.scaled_dot_product_attention(q, k, v, is_causal=False).contiguous().view([n, c, s])
        else:
            att = ((q * scale) @ (k.transpose(2, 3) * scale)).softmax(3)
            y = (att @ v).transpose(2, 3).contiguous().view([n, c, s])


        return input + self.dropout(self.out_proj(y))

class SkipBlock(nn.Module):
    def __init__(self, *main):
        super().__init__()
        self.main = nn.Sequential(*main)

    def forward(self, input):
        return torch.cat([self.main(input), input], dim=1)

class FourierFeatures(nn.Module):
    def __init__(self, in_features, out_features, std=1.):
        super().__init__()
        assert out_features % 2 == 0
        self.weight = nn.Parameter(torch.randn(
            [out_features // 2, in_features]) * std)

    def forward(self, input):
        f = 2 * math.pi * input @ self.weight.T
        return torch.cat([f.cos(), f.sin()], dim=-1)

def expand_to_planes(input, shape):
    return input[..., None].repeat([1, 1, shape[2]])

_kernels = {
    'linear':
        [1 / 8, 3 / 8, 3 / 8, 1 / 8],
    'cubic': 
        [-0.01171875, -0.03515625, 0.11328125, 0.43359375,
        0.43359375, 0.11328125, -0.03515625, -0.01171875],
    'lanczos3': 
        [0.003689131001010537, 0.015056144446134567, -0.03399861603975296,
        -0.066637322306633, 0.13550527393817902, 0.44638532400131226,
        0.44638532400131226, 0.13550527393817902, -0.066637322306633,
        -0.03399861603975296, 0.015056144446134567, 0.003689131001010537]
}

class Downsample1d(nn.Module):
    def __init__(self, kernel='linear', pad_mode='reflect'):
        super().__init__()
        self.pad_mode = pad_mode
        kernel_1d = torch.tensor(_kernels[kernel])
        self.pad = kernel_1d.shape[0] // 2 - 1
        self.register_buffer('kernel', kernel_1d)
    
    def forward(self, x):
        x = F.pad(x, (self.pad,) * 2, self.pad_mode)
        weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
        indices = torch.arange(x.shape[1], device=x.device)
        weight[indices, indices] = self.kernel.to(weight)
        return F.conv1d(x, weight, stride=2)


class Upsample1d(nn.Module):
    def __init__(self, kernel='linear', pad_mode='reflect'):
        super().__init__()
        self.pad_mode = pad_mode
        kernel_1d = torch.tensor(_kernels[kernel]) * 2
        self.pad = kernel_1d.shape[0] // 2 - 1
        self.register_buffer('kernel', kernel_1d)
    
    def forward(self, x):
        x = F.pad(x, ((self.pad + 1) // 2,) * 2, self.pad_mode)
        weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
        indices = torch.arange(x.shape[1], device=x.device)
        weight[indices, indices] = self.kernel.to(weight)
        return F.conv_transpose1d(x, weight, stride=2, padding=self.pad * 2 + 1)

def Downsample1d_2(
    in_channels: int, out_channels: int, factor: int, kernel_multiplier: int = 2
) -> nn.Module:
    assert kernel_multiplier % 2 == 0, "Kernel multiplier must be even"

    return nn.Conv1d(
        in_channels=in_channels,
        out_channels=out_channels,
        kernel_size=factor * kernel_multiplier + 1,
        stride=factor,
        padding=factor * (kernel_multiplier // 2),
    )


def Upsample1d_2(
    in_channels: int, out_channels: int, factor: int, use_nearest: bool = False
) -> nn.Module:

    if factor == 1:
        return nn.Conv1d(
            in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1
        )

    if use_nearest:
        return nn.Sequential(
            nn.Upsample(scale_factor=factor, mode="nearest"),
            nn.Conv1d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=3,
                padding=1,
            ),
        )
    else:
        return nn.ConvTranspose1d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=factor * 2,
            stride=factor,
            padding=factor // 2 + factor % 2,
            output_padding=factor % 2,
        )

def zero_init(layer):
    nn.init.zeros_(layer.weight)
    if layer.bias is not None:
        nn.init.zeros_(layer.bias)
    return layer

def rms_norm(x, scale, eps):
    dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
    mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
    scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
    return x * scale.to(x.dtype)

class AdaRMSNorm(nn.Module):
    def __init__(self, features, cond_features, eps=1e-6):
        super().__init__()
        self.eps = eps
        self.linear = zero_init(nn.Linear(cond_features, features, bias=False))
  
    def extra_repr(self):
        return f"eps={self.eps},"

    def forward(self, x, cond):
        return rms_norm(x, self.linear(cond)[:, None, :] + 1, self.eps)