Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,750 Bytes
c8448bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 |
import torch
from torch import nn
from torch.nn import functional as F
from functools import partial, reduce
import numpy as np
import typing as tp
import x_transformers
from x_transformers import ContinuousTransformerWrapper, Encoder
from einops import rearrange
from .blocks import ResConvBlock, FourierFeatures, Upsample1d, Upsample1d_2, Downsample1d, Downsample1d_2, SelfAttention1d, SkipBlock, expand_to_planes
from .conditioners import MultiConditioner, create_multi_conditioner_from_conditioning_config
from .factory import create_pretransform_from_config
from .local_attention import ContinuousLocalTransformer
from .pretransforms import Pretransform
from ...inference.generation import generate_diffusion_cond
from .adp import UNetCFG1d, UNet1d
from time import time
class Profiler:
def __init__(self):
self.ticks = [[time(), None]]
def tick(self, msg):
self.ticks.append([time(), msg])
def __repr__(self):
rep = 80 * "=" + "\n"
for i in range(1, len(self.ticks)):
msg = self.ticks[i][1]
ellapsed = self.ticks[i][0] - self.ticks[i - 1][0]
rep += msg + f": {ellapsed*1000:.2f}ms\n"
rep += 80 * "=" + "\n\n\n"
return rep
class DiffusionModel(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x, t, **kwargs):
raise NotImplementedError()
class DiffusionModelWrapper(nn.Module):
def __init__(
self,
model: DiffusionModel,
io_channels,
sample_size,
sample_rate,
min_input_length,
pretransform: tp.Optional[Pretransform] = None,
):
super().__init__()
self.io_channels = io_channels
self.sample_size = sample_size
self.sample_rate = sample_rate
self.min_input_length = min_input_length
self.model = model
if pretransform is not None:
self.pretransform = pretransform
else:
self.pretransform = None
def forward(self, x, t, **kwargs):
return self.model(x, t, **kwargs)
class ConditionedDiffusionModel(nn.Module):
def __init__(self,
*args,
supports_cross_attention: bool = False,
supports_input_concat: bool = False,
supports_global_cond: bool = False,
supports_prepend_cond: bool = False,
**kwargs):
super().__init__(*args, **kwargs)
self.supports_cross_attention = supports_cross_attention
self.supports_input_concat = supports_input_concat
self.supports_global_cond = supports_global_cond
self.supports_prepend_cond = supports_prepend_cond
def forward(self,
x: torch.Tensor,
t: torch.Tensor,
cross_attn_cond: torch.Tensor = None,
cross_attn_mask: torch.Tensor = None,
input_concat_cond: torch.Tensor = None,
global_embed: torch.Tensor = None,
prepend_cond: torch.Tensor = None,
prepend_cond_mask: torch.Tensor = None,
cfg_scale: float = 1.0,
cfg_dropout_prob: float = 0.0,
batch_cfg: bool = False,
rescale_cfg: bool = False,
**kwargs):
raise NotImplementedError()
class ConditionedDiffusionModelWrapper(nn.Module):
"""
A diffusion model that takes in conditioning
"""
def __init__(
self,
model: ConditionedDiffusionModel,
conditioner: MultiConditioner,
io_channels,
sample_rate,
min_input_length: int,
pretransform: tp.Optional[Pretransform] = None,
cross_attn_cond_ids: tp.List[str] = [],
global_cond_ids: tp.List[str] = [],
input_concat_ids: tp.List[str] = [],
prepend_cond_ids: tp.List[str] = [],
):
super().__init__()
# if "audio" not in cross_attn_cond_ids:
# cross_attn_cond_ids.append("audio")
self.model = model
self.conditioner = conditioner
self.io_channels = io_channels
self.sample_rate = sample_rate
self.pretransform = pretransform
self.cross_attn_cond_ids = cross_attn_cond_ids
self.global_cond_ids = global_cond_ids
self.input_concat_ids = input_concat_ids
self.prepend_cond_ids = prepend_cond_ids
self.min_input_length = min_input_length
def get_conditioning_inputs(self, cond: tp.Dict[str, tp.Any], negative=False):
# print("cross_attn_cond_ids:", self.cross_attn_cond_ids)
# print("global_cond_ids:", self.global_cond_ids)
# print("input_concat_ids:", self.input_concat_ids)
# print("cond keys:", cond.keys())
cross_attention_input = None
cross_attention_masks = None
global_cond = None
input_concat_cond = None
prepend_cond = None
prepend_cond_mask = None
if len(self.cross_attn_cond_ids) > 0:
# Concatenate all cross-attention inputs over the sequence dimension
# Assumes that the cross-attention inputs are of shape (batch, seq, channels)
# for key in self.cross_attn_cond_ids:
# if key in cond:
# print(f"Key '{key}' found. Shape: {cond[key][0].shape if cond[key][0] is not None else 'None'}, Type: {type(cond[key][0])}")
# if key == "prompt":
# print(f"Prompt tensor content: {cond[key][0]}") # Print the content of the prompt tensor
# else:
# print(f"Key '{key}' not found in cond.")
cross_attention_input = torch.cat([cond[key][0] for key in self.cross_attn_cond_ids], dim=1)
cross_attention_masks = torch.cat([cond[key][1] for key in self.cross_attn_cond_ids], dim=1)
if len(self.global_cond_ids) > 0:
# Concatenate all global conditioning inputs over the channel dimension
# Assumes that the global conditioning inputs are of shape (batch, channels)
global_cond = torch.cat([cond[key][0] for key in self.global_cond_ids], dim=-1)
if len(global_cond.shape) == 3:
global_cond = global_cond.squeeze(1)
if len(self.input_concat_ids) > 0:
# Concatenate all input concat conditioning inputs over the channel dimension
# Assumes that the input concat conditioning inputs are of shape (batch, channels, seq)
input_concat_cond = torch.cat([cond[key][0] for key in self.input_concat_ids], dim=1)
if len(self.prepend_cond_ids) > 0:
# Concatenate all prepend conditioning inputs over the sequence dimension
# Assumes that the prepend conditioning inputs are of shape (batch, seq, channels)
prepend_cond = torch.cat([cond[key][0] for key in self.prepend_cond_ids], dim=1)
prepend_cond_mask = torch.cat([cond[key][1] for key in self.prepend_cond_ids], dim=1)
if negative:
return {
"negative_cross_attn_cond": cross_attention_input,
"negative_cross_attn_mask": cross_attention_masks,
"negative_global_cond": global_cond,
"negative_input_concat_cond": input_concat_cond
}
else:
return {
"cross_attn_cond": cross_attention_input,
"cross_attn_mask": cross_attention_masks,
"global_cond": global_cond,
"input_concat_cond": input_concat_cond,
"prepend_cond": prepend_cond,
"prepend_cond_mask": prepend_cond_mask
}
def forward(self, x: torch.Tensor, t: torch.Tensor, cond: tp.Dict[str, tp.Any], **kwargs):
# print("Shape of input to model (x):", x.shape)
# print("Shape of time tensor (t):", t.shape)
# print("Shapes of conditioning tensor inputs:", {k: v.shape for k, v in cond.items() if isinstance(v, torch.Tensor)})
return self.model(x, t, **self.get_conditioning_inputs(cond), **kwargs)
def generate(self, *args, **kwargs):
return generate_diffusion_cond(self, *args, **kwargs)
class UNetCFG1DWrapper(ConditionedDiffusionModel):
def __init__(
self,
*args,
**kwargs
):
super().__init__(supports_cross_attention=True, supports_global_cond=True, supports_input_concat=True)
self.model = UNetCFG1d(*args, **kwargs)
with torch.no_grad():
for param in self.model.parameters():
param *= 0.5
def forward(self,
x,
t,
cross_attn_cond=None,
cross_attn_mask=None,
input_concat_cond=None,
global_cond=None,
cfg_scale=1.0,
cfg_dropout_prob: float = 0.0,
batch_cfg: bool = False,
rescale_cfg: bool = False,
negative_cross_attn_cond=None,
negative_cross_attn_mask=None,
negative_global_cond=None,
negative_input_concat_cond=None,
prepend_cond=None,
prepend_cond_mask=None,
**kwargs):
p = Profiler()
p.tick("start")
channels_list = None
if input_concat_cond is not None:
channels_list = [input_concat_cond]
outputs = self.model(
x,
t,
embedding=cross_attn_cond,
embedding_mask=cross_attn_mask,
features=global_cond,
channels_list=channels_list,
embedding_scale=cfg_scale,
embedding_mask_proba=cfg_dropout_prob,
batch_cfg=batch_cfg,
rescale_cfg=rescale_cfg,
negative_embedding=negative_cross_attn_cond,
negative_embedding_mask=negative_cross_attn_mask,
**kwargs)
p.tick("UNetCFG1D forward")
#print(f"Profiler: {p}")
return outputs
class UNet1DCondWrapper(ConditionedDiffusionModel):
def __init__(
self,
*args,
**kwargs
):
super().__init__(supports_cross_attention=False, supports_global_cond=True, supports_input_concat=True)
self.model = UNet1d(*args, **kwargs)
with torch.no_grad():
for param in self.model.parameters():
param *= 0.5
def forward(self,
x,
t,
input_concat_cond=None,
global_cond=None,
cross_attn_cond=None,
cross_attn_mask=None,
prepend_cond=None,
prepend_cond_mask=None,
cfg_scale=1.0,
cfg_dropout_prob: float = 0.0,
batch_cfg: bool = False,
rescale_cfg: bool = False,
negative_cross_attn_cond=None,
negative_cross_attn_mask=None,
negative_global_cond=None,
negative_input_concat_cond=None,
**kwargs):
channels_list = None
if input_concat_cond is not None:
# Interpolate input_concat_cond to the same length as x
if input_concat_cond.shape[2] != x.shape[2]:
input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest')
channels_list = [input_concat_cond]
outputs = self.model(
x,
t,
features=global_cond,
channels_list=channels_list,
**kwargs)
return outputs
class UNet1DUncondWrapper(DiffusionModel):
def __init__(
self,
in_channels,
*args,
**kwargs
):
super().__init__()
self.model = UNet1d(in_channels=in_channels, *args, **kwargs)
self.io_channels = in_channels
with torch.no_grad():
for param in self.model.parameters():
param *= 0.5
def forward(self, x, t, **kwargs):
return self.model(x, t, **kwargs)
class DAU1DCondWrapper(ConditionedDiffusionModel):
def __init__(
self,
*args,
**kwargs
):
super().__init__(supports_cross_attention=False, supports_global_cond=False, supports_input_concat=True)
self.model = DiffusionAttnUnet1D(*args, **kwargs)
with torch.no_grad():
for param in self.model.parameters():
param *= 0.5
def forward(self,
x,
t,
input_concat_cond=None,
cross_attn_cond=None,
cross_attn_mask=None,
global_cond=None,
cfg_scale=1.0,
cfg_dropout_prob: float = 0.0,
batch_cfg: bool = False,
rescale_cfg: bool = False,
negative_cross_attn_cond=None,
negative_cross_attn_mask=None,
negative_global_cond=None,
negative_input_concat_cond=None,
prepend_cond=None,
**kwargs):
return self.model(x, t, cond = input_concat_cond)
class DiffusionAttnUnet1D(nn.Module):
def __init__(
self,
io_channels = 2,
depth=14,
n_attn_layers = 6,
channels = [128, 128, 256, 256] + [512] * 10,
cond_dim = 0,
cond_noise_aug = False,
kernel_size = 5,
learned_resample = False,
strides = [2] * 13,
conv_bias = True,
use_snake = False
):
super().__init__()
self.cond_noise_aug = cond_noise_aug
self.io_channels = io_channels
if self.cond_noise_aug:
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
self.timestep_embed = FourierFeatures(1, 16)
attn_layer = depth - n_attn_layers
strides = [1] + strides
block = nn.Identity()
conv_block = partial(ResConvBlock, kernel_size=kernel_size, conv_bias = conv_bias, use_snake=use_snake)
for i in range(depth, 0, -1):
c = channels[i - 1]
stride = strides[i-1]
if stride > 2 and not learned_resample:
raise ValueError("Must have stride 2 without learned resampling")
if i > 1:
c_prev = channels[i - 2]
add_attn = i >= attn_layer and n_attn_layers > 0
block = SkipBlock(
Downsample1d_2(c_prev, c_prev, stride) if (learned_resample or stride == 1) else Downsample1d("cubic"),
conv_block(c_prev, c, c),
SelfAttention1d(
c, c // 32) if add_attn else nn.Identity(),
conv_block(c, c, c),
SelfAttention1d(
c, c // 32) if add_attn else nn.Identity(),
conv_block(c, c, c),
SelfAttention1d(
c, c // 32) if add_attn else nn.Identity(),
block,
conv_block(c * 2 if i != depth else c, c, c),
SelfAttention1d(
c, c // 32) if add_attn else nn.Identity(),
conv_block(c, c, c),
SelfAttention1d(
c, c // 32) if add_attn else nn.Identity(),
conv_block(c, c, c_prev),
SelfAttention1d(c_prev, c_prev //
32) if add_attn else nn.Identity(),
Upsample1d_2(c_prev, c_prev, stride) if learned_resample else Upsample1d(kernel="cubic")
)
else:
cond_embed_dim = 16 if not self.cond_noise_aug else 32
block = nn.Sequential(
conv_block((io_channels + cond_dim) + cond_embed_dim, c, c),
conv_block(c, c, c),
conv_block(c, c, c),
block,
conv_block(c * 2, c, c),
conv_block(c, c, c),
conv_block(c, c, io_channels, is_last=True),
)
self.net = block
with torch.no_grad():
for param in self.net.parameters():
param *= 0.5
def forward(self, x, t, cond=None, cond_aug_scale=None):
timestep_embed = expand_to_planes(self.timestep_embed(t[:, None]), x.shape)
inputs = [x, timestep_embed]
if cond is not None:
if cond.shape[2] != x.shape[2]:
cond = F.interpolate(cond, (x.shape[2], ), mode='linear', align_corners=False)
if self.cond_noise_aug:
# Get a random number between 0 and 1, uniformly sampled
if cond_aug_scale is None:
aug_level = self.rng.draw(cond.shape[0])[:, 0].to(cond)
else:
aug_level = torch.tensor([cond_aug_scale]).repeat([cond.shape[0]]).to(cond)
# Add noise to the conditioning signal
cond = cond + torch.randn_like(cond) * aug_level[:, None, None]
# Get embedding for noise cond level, reusing timestamp_embed
aug_level_embed = expand_to_planes(self.timestep_embed(aug_level[:, None]), x.shape)
inputs.append(aug_level_embed)
inputs.append(cond)
outputs = self.net(torch.cat(inputs, dim=1))
return outputs
class DiTWrapper(ConditionedDiffusionModel):
def __init__(
self,
*args,
**kwargs
):
super().__init__(supports_cross_attention=True, supports_global_cond=False, supports_input_concat=False)
self.model = DiffusionTransformer(*args, **kwargs)
with torch.no_grad():
for param in self.model.parameters():
param *= 0.5
def forward(self,
x,
t,
cross_attn_cond=None,
cross_attn_mask=None,
negative_cross_attn_cond=None,
negative_cross_attn_mask=None,
input_concat_cond=None,
negative_input_concat_cond=None,
global_cond=None,
negative_global_cond=None,
prepend_cond=None,
prepend_cond_mask=None,
cfg_scale=1.0,
cfg_dropout_prob: float = 0.0,
batch_cfg: bool = True,
rescale_cfg: bool = False,
scale_phi: float = 0.0,
**kwargs):
assert batch_cfg, "batch_cfg must be True for DiTWrapper"
assert negative_input_concat_cond is None, "negative_input_concat_cond is not supported for DiTWrapper"
assert global_cond is None, "global_cond is not supported for DiTWrapper"
assert negative_global_cond is None, "negative_global_cond is not supported for DiTWrapper"
return self.model(
x,
t,
cross_attn_cond=cross_attn_cond,
cross_attn_cond_mask=cross_attn_mask,
negative_cross_attn_cond=negative_cross_attn_cond,
negative_cross_attn_mask=negative_cross_attn_mask,
input_concat_cond=input_concat_cond,
prepend_cond=prepend_cond,
prepend_cond_mask=prepend_cond_mask,
cfg_scale=cfg_scale,
cfg_dropout_prob=cfg_dropout_prob,
scale_phi=scale_phi,
**kwargs)
class DiTUncondWrapper(DiffusionModel):
def __init__(
self,
in_channels,
*args,
**kwargs
):
super().__init__()
self.model = DiffusionTransformer(io_channels=in_channels, *args, **kwargs)
self.io_channels = in_channels
with torch.no_grad():
for param in self.model.parameters():
param *= 0.5
def forward(self, x, t, **kwargs):
return self.model(x, t, **kwargs)
class DiffusionTransformer(nn.Module):
def __init__(self,
io_channels=32,
input_length=512,
embed_dim=768,
cond_token_dim=0,
global_cond_dim=0,
input_concat_dim=0,
prepend_cond_dim=0,
depth=12,
num_heads=8,
transformer_type: tp.Literal["local_attn", "x-transformers"] = "x-transformers",
**kwargs):
super().__init__()
self.cond_token_dim = cond_token_dim
# Timestep embeddings
timestep_features_dim = 256
self.timestep_features = FourierFeatures(1, timestep_features_dim)
self.to_timestep_embed = nn.Sequential(
nn.Linear(timestep_features_dim, embed_dim, bias=True),
nn.SiLU(),
nn.Linear(embed_dim, embed_dim, bias=True),
)
if cond_token_dim > 0:
# Conditioning tokens
self.to_cond_embed = nn.Sequential(
nn.Linear(cond_token_dim, embed_dim, bias=False),
nn.SiLU(),
nn.Linear(embed_dim, embed_dim, bias=False)
)
if global_cond_dim > 0:
# Global conditioning
self.to_global_embed = nn.Sequential(
nn.Linear(global_cond_dim, embed_dim, bias=False),
nn.SiLU(),
nn.Linear(embed_dim, embed_dim, bias=False)
)
if prepend_cond_dim > 0:
# Prepend conditioning
self.to_prepend_embed = nn.Sequential(
nn.Linear(prepend_cond_dim, embed_dim, bias=False),
nn.SiLU(),
nn.Linear(embed_dim, embed_dim, bias=False)
)
self.input_concat_dim = input_concat_dim
dim_in = io_channels + self.input_concat_dim
# Transformer
self.transformer_type = transformer_type
if self.transformer_type == "local_attn":
self.transformer = ContinuousLocalTransformer(
dim=embed_dim,
dim_in=dim_in,
dim_out=io_channels,
depth=depth,
heads=num_heads,
cond_dim=embed_dim if global_cond_dim > 0 else 0,
cross_attn_cond_dim=embed_dim if cond_token_dim > 0 else 0,
**kwargs
)
elif self.transformer_type == "x-transformers":
self.transformer = ContinuousTransformerWrapper(
dim_in=dim_in,
dim_out=io_channels,
max_seq_len=0, #Not relevant without absolute positional embeds
attn_layers = Encoder(
dim=embed_dim,
depth=depth,
heads=num_heads,
attn_flash = True,
cross_attend = cond_token_dim > 0,
zero_init_branch_output=True,
use_abs_pos_emb = False,
rotary_pos_emb=True,
ff_swish = True,
ff_glu = True,
**kwargs
)
)
else:
raise ValueError(f"Unknown transformer type: {self.transformer_type}")
self.preprocess_conv = nn.Conv1d(dim_in, dim_in, 1, bias=False)
nn.init.zeros_(self.preprocess_conv.weight)
self.postprocess_conv = nn.Conv1d(io_channels, io_channels, 1, bias=False)
nn.init.zeros_(self.postprocess_conv.weight)
def _forward(
self,
x,
t,
mask=None,
cross_attn_cond=None,
cross_attn_cond_mask=None,
input_concat_cond=None,
global_embed=None,
prepend_cond=None,
prepend_cond_mask=None,
**kwargs):
if cross_attn_cond is not None:
cross_attn_cond = self.to_cond_embed(cross_attn_cond)
# Get the batch of timestep embeddings
timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None])) # (b, embed_dim)
# Add a sequence dimension to the timestep embeddings
timestep_embed = timestep_embed.unsqueeze(1)
prepend_inputs = timestep_embed
prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)
if global_embed is not None:
# Project the global conditioning to the embedding dimension
global_embed = self.to_global_embed(global_embed)
# Add the global conditioning to the timestep embeddings
prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(2)], dim=2)
prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)], dim=1)
if prepend_cond is not None:
# Project the prepend conditioning to the embedding dimension
prepend_cond = self.to_prepend_embed(prepend_cond)
# Set up inputs to prepend to transformer inputs
prepend_inputs = torch.cat([prepend_inputs, prepend_cond], dim=1)
if prepend_cond_mask is not None:
prepend_mask = torch.cat([prepend_mask, prepend_cond_mask], dim=1)
else:
prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], prepend_cond.shape[1]), device=x.device, dtype=torch.bool)], dim=1)
prepend_length = prepend_inputs.shape[1]
if input_concat_cond is not None:
# Interpolate input_concat_cond to the same length as x
if input_concat_cond.shape[2] != x.shape[2]:
input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest')
x = torch.cat([x, input_concat_cond], dim=1)
x = self.preprocess_conv(x) + x
x = rearrange(x, "b c t -> b t c")
if self.transformer_type == "local_attn":
if mask is not None:
mask = torch.cat([prepend_mask, mask], dim=1)
output = self.transformer(x, prepend_cond=prepend_inputs, cross_attn_cond=cross_attn_cond, cross_attn_cond_mask=cross_attn_cond_mask, mask=mask, **kwargs)
else:
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, **kwargs)
output = rearrange(output, "b t c -> b c t")[:,:,prepend_length:]
output = self.postprocess_conv(output) + output
return output
def forward(
self,
x,
t,
cross_attn_cond=None,
cross_attn_cond_mask=None,
negative_cross_attn_cond=None,
negative_cross_attn_mask=None,
input_concat_cond=None,
global_embed=None,
prepend_cond=None,
prepend_cond_mask=None,
cfg_scale=1.0,
cfg_dropout_prob=0.0,
causal=False,
scale_phi=0.0,
mask=None,
**kwargs):
assert causal == False, "Causal mode is not supported for DiffusionTransformer"
if cross_attn_cond_mask is not None:
cross_attn_cond_mask = cross_attn_cond_mask.bool()
cross_attn_cond_mask = None # Temporarily disabling conditioning masks due to kernel issue for flash attention
if prepend_cond_mask is not None:
prepend_cond_mask = prepend_cond_mask.bool()
# CFG dropout
if cfg_dropout_prob > 0.0:
if cross_attn_cond is not None:
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
dropout_mask = torch.bernoulli(torch.full((cross_attn_cond.shape[0], 1, 1), cfg_dropout_prob, device=cross_attn_cond.device)).to(torch.bool)
cross_attn_cond = torch.where(dropout_mask, null_embed, cross_attn_cond)
if prepend_cond is not None:
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
dropout_mask = torch.bernoulli(torch.full((prepend_cond.shape[0], 1, 1), cfg_dropout_prob, device=prepend_cond.device)).to(torch.bool)
prepend_cond = torch.where(dropout_mask, null_embed, prepend_cond)
if cfg_scale != 1.0 and (cross_attn_cond is not None or prepend_cond is not None):
# Classifier-free guidance
# Concatenate conditioned and unconditioned inputs on the batch dimension
batch_inputs = torch.cat([x, x], dim=0)
batch_timestep = torch.cat([t, t], dim=0)
if global_embed is not None:
batch_global_cond = torch.cat([global_embed, global_embed], dim=0)
else:
batch_global_cond = None
if input_concat_cond is not None:
batch_input_concat_cond = torch.cat([input_concat_cond, input_concat_cond], dim=0)
else:
batch_input_concat_cond = None
batch_cond = None
batch_cond_masks = None
# Handle CFG for cross-attention conditioning
if cross_attn_cond is not None:
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
# For negative cross-attention conditioning, replace the null embed with the negative cross-attention conditioning
if negative_cross_attn_cond is not None:
# If there's a negative cross-attention mask, set the masked tokens to the null embed
if negative_cross_attn_mask is not None:
negative_cross_attn_mask = negative_cross_attn_mask.to(torch.bool).unsqueeze(2)
negative_cross_attn_cond = torch.where(negative_cross_attn_mask, negative_cross_attn_cond, null_embed)
batch_cond = torch.cat([cross_attn_cond, negative_cross_attn_cond], dim=0)
else:
batch_cond = torch.cat([cross_attn_cond, null_embed], dim=0)
if cross_attn_cond_mask is not None:
batch_cond_masks = torch.cat([cross_attn_cond_mask, cross_attn_cond_mask], dim=0)
batch_prepend_cond = None
batch_prepend_cond_mask = None
if prepend_cond is not None:
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
batch_prepend_cond = torch.cat([prepend_cond, null_embed], dim=0)
if prepend_cond_mask is not None:
batch_prepend_cond_mask = torch.cat([prepend_cond_mask, prepend_cond_mask], dim=0)
if mask is not None:
batch_masks = torch.cat([mask, mask], dim=0)
else:
batch_masks = None
batch_output = self._forward(
batch_inputs,
batch_timestep,
cross_attn_cond=batch_cond,
cross_attn_cond_mask=batch_cond_masks,
mask = batch_masks,
input_concat_cond=batch_input_concat_cond,
global_embed = batch_global_cond,
prepend_cond = batch_prepend_cond,
prepend_cond_mask = batch_prepend_cond_mask,
**kwargs)
cond_output, uncond_output = torch.chunk(batch_output, 2, dim=0)
cfg_output = uncond_output + (cond_output - uncond_output) * cfg_scale
if scale_phi != 0.0:
cond_out_std = cond_output.std(dim=1, keepdim=True)
out_cfg_std = cfg_output.std(dim=1, keepdim=True)
return scale_phi * (cfg_output * (cond_out_std/out_cfg_std)) + (1-scale_phi) * cfg_output
else:
return cfg_output
else:
return self._forward(
x,
t,
cross_attn_cond=cross_attn_cond,
cross_attn_cond_mask=cross_attn_cond_mask,
input_concat_cond=input_concat_cond,
global_embed=global_embed,
prepend_cond=prepend_cond,
prepend_cond_mask=prepend_cond_mask,
mask=mask,
**kwargs
)
def create_diffusion_uncond_from_config(config: tp.Dict[str, tp.Any]):
diffusion_uncond_config = config["model"]
model_type = diffusion_uncond_config.get('type', None)
diffusion_config = diffusion_uncond_config.get('config', {})
assert model_type is not None, "Must specify model type in config"
pretransform = diffusion_uncond_config.get("pretransform", None)
sample_size = config.get("sample_size", None)
assert sample_size is not None, "Must specify sample size in config"
sample_rate = config.get("sample_rate", None)
assert sample_rate is not None, "Must specify sample rate in config"
if pretransform is not None:
pretransform = create_pretransform_from_config(pretransform, sample_rate)
min_input_length = pretransform.downsampling_ratio
else:
min_input_length = 1
if model_type == 'DAU1d':
model = DiffusionAttnUnet1D(
**diffusion_config
)
elif model_type == "adp_uncond_1d":
model = UNet1DUncondWrapper(
**diffusion_config
)
elif model_type == "dit":
model = DiTUncondWrapper(
**diffusion_config
)
else:
raise NotImplementedError(f'Unknown model type: {model_type}')
return DiffusionModelWrapper(model,
io_channels=model.io_channels,
sample_size=sample_size,
sample_rate=sample_rate,
pretransform=pretransform,
min_input_length=min_input_length)
def create_diffusion_cond_from_config(config: tp.Dict[str, tp.Any]):
model_config = config["model"]
diffusion_config = model_config.get('diffusion', None)
assert diffusion_config is not None, "Must specify diffusion config"
diffusion_model_type = diffusion_config.get('type', None)
assert diffusion_model_type is not None, "Must specify diffusion model type"
diffusion_model_config = diffusion_config.get('config', None)
assert diffusion_model_config is not None, "Must specify diffusion model config"
if diffusion_model_type == 'adp_cfg_1d':
diffusion_model = UNetCFG1DWrapper(**diffusion_model_config)
elif diffusion_model_type == 'adp_1d':
diffusion_model = UNet1DCondWrapper(**diffusion_model_config)
elif diffusion_model_type == 'dit':
diffusion_model = DiTWrapper(**diffusion_model_config)
io_channels = model_config.get('io_channels', None)
assert io_channels is not None, "Must specify io_channels in model config"
sample_rate = config.get('sample_rate', None)
assert sample_rate is not None, "Must specify sample_rate in config"
conditioning_config = model_config.get('conditioning', None)
conditioner = None
if conditioning_config is not None:
conditioner = create_multi_conditioner_from_conditioning_config(conditioning_config)
cross_attention_ids = diffusion_config.get('cross_attention_cond_ids', [])
global_cond_ids = diffusion_config.get('global_cond_ids', [])
input_concat_ids = diffusion_config.get('input_concat_ids', [])
prepend_cond_ids = diffusion_config.get('prepend_cond_ids', [])
pretransform = model_config.get("pretransform", None)
if pretransform is not None:
pretransform = create_pretransform_from_config(pretransform, sample_rate)
min_input_length = pretransform.downsampling_ratio
else:
min_input_length = 1
if diffusion_model_type == "adp_cfg_1d" or diffusion_model_type == "adp_1d":
min_input_length *= np.prod(diffusion_model_config["factors"])
elif diffusion_model_type == "dit":
min_input_length = min_input_length # There's no downsampling in DiT
return ConditionedDiffusionModelWrapper(
diffusion_model,
conditioner,
min_input_length=min_input_length,
sample_rate=sample_rate,
cross_attn_cond_ids=cross_attention_ids,
global_cond_ids=global_cond_ids,
input_concat_ids=input_concat_ids,
prepend_cond_ids=prepend_cond_ids,
pretransform=pretransform,
io_channels=io_channels
) |