Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,948 Bytes
c7d7380 d65703f dc3f8c5 c7d7380 d65703f db455db d65703f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import spaces
# Default: Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"OS-Copilot/OS-Atlas-Base-7B", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("OS-Copilot/OS-Atlas-Base-7B")
@spaces.GPU
def run(image, message):
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "image,
},
{"type": "text", "text": message},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False
)
return output_text
# <|object_ref_start|>language switch<|object_ref_end|><|box_start|>(576,12),(592,42)<|box_end|><|im_end|>
with gr.Blocks() as demo:
gr.Markdown("# Unofficial OS-Atlas demo")
image = gr.Image(label="Image")
text = gr.Textbox(label="Prompt")
btn = gr.Button("Generate", variant="primary")
output = gr.Textbox(interactive=False)
btn.click(run, inputs=[image, text], outputs=output)
demo.queue().launch() |