Spaces:
Running
on
Zero
Running
on
Zero
from .generation import generate_diffusion_cond | |
from ..stable_audio_tools.models.diffusion import ConditionedDiffusionModelWrapper | |
from ..inference.utils import prepare_audio | |
import torch | |
from torchaudio import transforms as T | |
from torch.nn import functional as F | |
def generate_mono_to_stereo( | |
model: ConditionedDiffusionModelWrapper, | |
audio: torch.Tensor, # (batch, channels, time) | |
in_sr: int, | |
steps: int, | |
sampler_kwargs: dict = {}, | |
): | |
""" | |
Generate stereo audio from mono audio using a diffusion model. | |
Args: | |
model: A mono-to-stereo diffusion prior wrapper | |
audio: The mono audio to convert to stereo | |
in_sr: The sample rate of the input audio | |
steps: The number of diffusion steps to run | |
sampler_kwargs: Keyword arguments to pass to the diffusion sampler | |
""" | |
device = audio.device | |
sample_rate = model.sample_rate | |
# Resample input audio if necessary | |
if in_sr != sample_rate: | |
resample_tf = T.Resample(in_sr, sample_rate).to(audio.device) | |
audio = resample_tf(audio) | |
audio_length = audio.shape[-1] | |
# Pad input audio to be compatible with the model | |
min_length = model.min_input_length | |
padded_input_length = audio_length + (min_length - (audio_length % min_length)) % min_length | |
# Pad input audio to be compatible with the model | |
if padded_input_length > audio_length: | |
audio = F.pad(audio, (0, padded_input_length - audio_length)) | |
# Make audio mono, duplicate to stereo | |
dual_mono = audio.mean(1, keepdim=True).repeat(1, 2, 1) | |
if model.pretransform is not None: | |
dual_mono = model.pretransform.encode(dual_mono) | |
conditioning = {"source": [dual_mono]} | |
stereo_audio = generate_diffusion_cond( | |
model, | |
conditioning_tensors=conditioning, | |
steps=steps, | |
sample_size=padded_input_length, | |
sample_rate=sample_rate, | |
device=device, | |
**sampler_kwargs, | |
) | |
return stereo_audio | |