mrfakename commited on
Commit
3283950
·
verified ·
1 Parent(s): 89515b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -129
app.py CHANGED
@@ -1,135 +1,24 @@
1
- # From https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat
2
- import os
3
- from threading import Thread
4
- from typing import Iterator
5
 
6
- import gradio as gr
7
- import spaces
8
  import torch
9
- from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
10
 
11
- MAX_MAX_NEW_TOKENS = 2048
12
- DEFAULT_MAX_NEW_TOKENS = 1024
13
- MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))
14
 
15
- DESCRIPTION = """
16
- # Chat with Failure 2B Base
17
-
18
- Chat with [Failure 2B Base](https://huggingface.co/mrfakename/failure-2b-base).
19
-
20
- ---
21
-
22
- A quick failed experiment at creating a SLM that can code. Based on [Danube](https://huggingface.co/h2oai/h2o-danube-1.8b-base).
23
-
24
- Scored 14.8% on HumanEval (FWIW I personally recommend using a quantized 7B model for coding instead of a SLM). Open-sourcing for transparency.
25
- """
26
- if not torch.cuda.is_available():
27
- DESCRIPTION += "\n\nRunning on CPU 🥶 This demo does not work on CPU."
28
-
29
- if torch.cuda.is_available():
30
- model_id = "mrfakename/failure-2b-base"
31
- model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
32
- tokenizer = AutoTokenizer.from_pretrained(model_id)
33
- tokenizer.use_default_system_prompt = False
34
-
35
-
36
- @spaces.GPU
37
- def generate(
38
- message: str,
39
- chat_history: list[tuple[str, str]],
40
- system_prompt: str,
41
- max_new_tokens: int = 1024,
42
- temperature: float = 0.2,
43
- top_p: float = 0.9,
44
- top_k: int = 50,
45
- repetition_penalty: float = 1.2,
46
- ) -> Iterator[str]:
47
- conversation = []
48
- if system_prompt:
49
- conversation.append({"role": "system", "content": system_prompt})
50
- for user, assistant in chat_history:
51
- conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
52
- conversation.append({"role": "user", "content": message})
53
-
54
- input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
55
- if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
56
- input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
57
- gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
58
- input_ids = input_ids.to(model.device)
59
-
60
- streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
61
- generate_kwargs = dict(
62
- {"input_ids": input_ids},
63
- streamer=streamer,
64
- max_new_tokens=max_new_tokens,
65
- do_sample=True,
66
- top_p=top_p,
67
- top_k=top_k,
68
- temperature=temperature,
69
- num_beams=1,
70
- repetition_penalty=repetition_penalty,
71
- )
72
- t = Thread(target=model.generate, kwargs=generate_kwargs)
73
- t.start()
74
-
75
- outputs = []
76
- for text in streamer:
77
- outputs.append(text)
78
- yield "".join(outputs)
79
-
80
-
81
- chat_interface = gr.ChatInterface(
82
- fn=generate,
83
- additional_inputs=[
84
- gr.Textbox(label="System prompt", lines=6),
85
- gr.Slider(
86
- label="Max new tokens",
87
- minimum=1,
88
- maximum=MAX_MAX_NEW_TOKENS,
89
- step=1,
90
- value=DEFAULT_MAX_NEW_TOKENS,
91
- ),
92
- gr.Slider(
93
- label="Temperature",
94
- minimum=0.1,
95
- maximum=4.0,
96
- step=0.1,
97
- value=0.2,
98
- ),
99
- gr.Slider(
100
- label="Top-p (nucleus sampling)",
101
- minimum=0.05,
102
- maximum=1.0,
103
- step=0.05,
104
- value=0.9,
105
- ),
106
- gr.Slider(
107
- label="Top-k",
108
- minimum=1,
109
- maximum=1000,
110
- step=1,
111
- value=50,
112
- ),
113
- gr.Slider(
114
- label="Repetition penalty",
115
- minimum=1.0,
116
- maximum=2.0,
117
- step=0.05,
118
- value=1.2,
119
- ),
120
- ],
121
- stop_btn=None,
122
- examples=[
123
- ["Hello there! How are you doing?"],
124
- ["Please explain the Python programming language to me."],
125
- ["Please write a function in Python to calculate the fibonacci sequence."],
126
- ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
127
- ],
128
- )
129
-
130
- with gr.Blocks() as demo:
131
- gr.Markdown(DESCRIPTION)
132
- chat_interface.render()
133
 
134
  if __name__ == "__main__":
135
- demo.queue(max_size=20).launch()
 
 
 
 
 
 
 
 
 
 
1
+ from sonique import get_pretrained_model
2
+ from sonique.interface.gradio import create_ui
3
+ import json
 
4
 
 
 
5
  import torch
 
6
 
7
+ def main(args):
8
+ torch.manual_seed(42)
 
9
 
10
+ interface = create_ui(model_config_path = args.model_config, ckpt_path=args.ckpt_path, pretrained_name=args.pretrained_name, pretransform_ckpt_path=args.pretransform_ckpt_path)
11
+ interface.queue()
12
+ interface.launch(share=True, auth=(args.username, args.password) if args.username is not None else None)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  if __name__ == "__main__":
15
+ import argparse
16
+ parser = argparse.ArgumentParser(description='Run gradio interface')
17
+ parser.add_argument('--pretrained-name', type=str, help='Name of pretrained model', required=False)
18
+ parser.add_argument('--model-config', type=str, help='Path to model config', required=False)
19
+ parser.add_argument('--ckpt-path', type=str, help='Path to model checkpoint', required=False)
20
+ parser.add_argument('--pretransform-ckpt-path', type=str, help='Optional to model pretransform checkpoint', required=False)
21
+ parser.add_argument('--username', type=str, help='Gradio username', required=False)
22
+ parser.add_argument('--password', type=str, help='Gradio password', required=False)
23
+ args = parser.parse_args()
24
+ main(args)