Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -13,26 +13,27 @@ model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto"
|
|
13 |
|
14 |
processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)
|
15 |
|
16 |
-
image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
|
17 |
-
|
18 |
-
image = Image.open(requests.get(image_path, stream=True).raw)
|
19 |
-
|
20 |
-
messages = [
|
21 |
-
{
|
22 |
-
"role": "user",
|
23 |
-
"content": [
|
24 |
-
{"text": None, "type": "image"},
|
25 |
-
{"text": "what is the image?", "type": "text"},
|
26 |
-
],
|
27 |
-
}
|
28 |
-
]
|
29 |
-
|
30 |
-
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
31 |
-
inputs = processor(text=text, images=image, return_tensors="pt")
|
32 |
-
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
|
33 |
-
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
34 |
@spaces.GPU
|
35 |
def run():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
37 |
output = model.generate(
|
38 |
**inputs,
|
|
|
13 |
|
14 |
processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
@spaces.GPU
|
17 |
def run():
|
18 |
+
|
19 |
+
image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
|
20 |
+
|
21 |
+
image = Image.open(requests.get(image_path, stream=True).raw)
|
22 |
+
|
23 |
+
messages = [
|
24 |
+
{
|
25 |
+
"role": "user",
|
26 |
+
"content": [
|
27 |
+
{"text": None, "type": "image"},
|
28 |
+
{"text": "what is the image?", "type": "text"},
|
29 |
+
],
|
30 |
+
}
|
31 |
+
]
|
32 |
+
|
33 |
+
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
34 |
+
inputs = processor(text=text, images=image, return_tensors="pt")
|
35 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
|
36 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
37 |
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
38 |
output = model.generate(
|
39 |
**inputs,
|