Spaces:
Runtime error
Runtime error
| import importlib | |
| import os | |
| import torch | |
| import hashlib | |
| import requests | |
| import numpy as np | |
| from tqdm import tqdm | |
| from collections import abc | |
| from einops import rearrange | |
| from functools import partial | |
| import multiprocessing as mp | |
| from threading import Thread | |
| from queue import Queue | |
| from inspect import isfunction | |
| from PIL import Image, ImageDraw, ImageFont | |
| URL_MAP = { | |
| "vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1" | |
| } | |
| CKPT_MAP = { | |
| "vgg_lpips": "vgg.pth" | |
| } | |
| MD5_MAP = { | |
| "vgg_lpips": "d507d7349b931f0638a25a48a722f98a" | |
| } | |
| def md5_hash(path): | |
| with open(path, "rb") as f: | |
| content = f.read() | |
| return hashlib.md5(content).hexdigest() | |
| def log_txt_as_img(wh, xc, size=10): | |
| # wh a tuple of (width, height) | |
| # xc a list of captions to plot | |
| b = len(xc) | |
| txts = list() | |
| for bi in range(b): | |
| txt = Image.new("RGB", wh, color="white") | |
| draw = ImageDraw.Draw(txt) | |
| font = ImageFont.truetype('data/DejaVuSans.ttf', size=size) | |
| nc = int(40 * (wh[0] / 256)) | |
| lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) | |
| try: | |
| draw.text((0, 0), lines, fill="black", font=font) | |
| except UnicodeEncodeError: | |
| print("Cant encode string for logging. Skipping.") | |
| txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 | |
| txts.append(txt) | |
| txts = np.stack(txts) | |
| txts = torch.tensor(txts) | |
| return txts | |
| def download(url, local_path, chunk_size=1024): | |
| os.makedirs(os.path.split(local_path)[0], exist_ok=True) | |
| with requests.get(url, stream=True) as r: | |
| total_size = int(r.headers.get("content-length", 0)) | |
| with tqdm(total=total_size, unit="B", unit_scale=True) as pbar: | |
| with open(local_path, "wb") as f: | |
| for data in r.iter_content(chunk_size=chunk_size): | |
| if data: | |
| f.write(data) | |
| pbar.update(chunk_size) | |
| def get_ckpt_path(name, root, check=False): | |
| assert name in URL_MAP | |
| path = os.path.join(root, CKPT_MAP[name]) | |
| if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]): | |
| print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path)) | |
| download(URL_MAP[name], path) | |
| md5 = md5_hash(path) | |
| assert md5 == MD5_MAP[name], md5 | |
| return path | |
| def ismap(x): | |
| if not isinstance(x, torch.Tensor): | |
| return False | |
| return (len(x.shape) == 4) and (x.shape[1] > 3) | |
| def isimage(x): | |
| if not isinstance(x, torch.Tensor): | |
| return False | |
| return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) | |
| def exists(x): | |
| return x is not None | |
| def default(val, d): | |
| if exists(val): | |
| return val | |
| return d() if isfunction(d) else d | |
| def mean_flat(tensor): | |
| """ | |
| https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 | |
| Take the mean over all non-batch dimensions. | |
| """ | |
| return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
| def count_params(model, verbose=False): | |
| total_params = sum(p.numel() for p in model.parameters()) | |
| if verbose: | |
| print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.") | |
| return total_params | |
| def instantiate_from_config(config): | |
| if not "target" in config: | |
| if config == '__is_first_stage__': | |
| return None | |
| elif config == "__is_unconditional__": | |
| return None | |
| raise KeyError("Expected key `target` to instantiate.") | |
| return get_obj_from_str(config["target"])(**config.get("params", dict())) | |
| def get_obj_from_str(string, reload=False): | |
| module, cls = string.rsplit(".", 1) | |
| if reload: | |
| module_imp = importlib.import_module(module) | |
| importlib.reload(module_imp) | |
| return getattr(importlib.import_module(module, package=None), cls) | |
| def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False): | |
| # create dummy dataset instance | |
| # run prefetching | |
| if idx_to_fn: | |
| res = func(data, worker_id=idx) | |
| else: | |
| res = func(data) | |
| Q.put([idx, res]) | |
| Q.put("Done") | |
| def parallel_data_prefetch( | |
| func: callable, data, n_proc, target_data_type="ndarray", cpu_intensive=True, use_worker_id=False | |
| ): | |
| # if target_data_type not in ["ndarray", "list"]: | |
| # raise ValueError( | |
| # "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray." | |
| # ) | |
| if isinstance(data, np.ndarray) and target_data_type == "list": | |
| raise ValueError("list expected but function got ndarray.") | |
| elif isinstance(data, abc.Iterable): | |
| if isinstance(data, dict): | |
| print( | |
| f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.' | |
| ) | |
| data = list(data.values()) | |
| if target_data_type == "ndarray": | |
| data = np.asarray(data) | |
| else: | |
| data = list(data) | |
| else: | |
| raise TypeError( | |
| f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}." | |
| ) | |
| if cpu_intensive: | |
| Q = mp.Queue(1000) | |
| proc = mp.Process | |
| else: | |
| Q = Queue(1000) | |
| proc = Thread | |
| # spawn processes | |
| if target_data_type == "ndarray": | |
| arguments = [ | |
| [func, Q, part, i, use_worker_id] | |
| for i, part in enumerate(np.array_split(data, n_proc)) | |
| ] | |
| else: | |
| step = ( | |
| int(len(data) / n_proc + 1) | |
| if len(data) % n_proc != 0 | |
| else int(len(data) / n_proc) | |
| ) | |
| arguments = [ | |
| [func, Q, part, i, use_worker_id] | |
| for i, part in enumerate( | |
| [data[i: i + step] for i in range(0, len(data), step)] | |
| ) | |
| ] | |
| processes = [] | |
| for i in range(n_proc): | |
| p = proc(target=_do_parallel_data_prefetch, args=arguments[i]) | |
| processes += [p] | |
| # start processes | |
| print(f"Start prefetching...") | |
| import time | |
| start = time.time() | |
| gather_res = [[] for _ in range(n_proc)] | |
| try: | |
| for p in processes: | |
| p.start() | |
| k = 0 | |
| while k < n_proc: | |
| # get result | |
| res = Q.get() | |
| if res == "Done": | |
| k += 1 | |
| else: | |
| gather_res[res[0]] = res[1] | |
| except Exception as e: | |
| print("Exception: ", e) | |
| for p in processes: | |
| p.terminate() | |
| raise e | |
| finally: | |
| for p in processes: | |
| p.join() | |
| print(f"Prefetching complete. [{time.time() - start} sec.]") | |
| if target_data_type == 'ndarray': | |
| if not isinstance(gather_res[0], np.ndarray): | |
| return np.concatenate([np.asarray(r) for r in gather_res], axis=0) | |
| # order outputs | |
| return np.concatenate(gather_res, axis=0) | |
| elif target_data_type == 'list': | |
| out = [] | |
| for r in gather_res: | |
| out.extend(r) | |
| return out | |
| else: | |
| return gather_res | |