Spaces:
Runtime error
Runtime error
added butterflies app
Browse files- butterflies_app.py +330 -0
butterflies_app.py
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
import argparse, os, sys, glob
|
| 6 |
+
import torch
|
| 7 |
+
import pickle
|
| 8 |
+
import numpy as np
|
| 9 |
+
from omegaconf import OmegaConf
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from tqdm import tqdm, trange
|
| 12 |
+
from einops import rearrange
|
| 13 |
+
from torchvision.utils import make_grid
|
| 14 |
+
|
| 15 |
+
from ldm.util import instantiate_from_config
|
| 16 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
| 17 |
+
from ldm.models.diffusion.plms import PLMSSampler
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def load_model_from_config(config, ckpt, verbose=False):
|
| 21 |
+
print(f"Loading model from {ckpt}")
|
| 22 |
+
# pl_sd = torch.load(ckpt, map_location="cpu")
|
| 23 |
+
pl_sd = torch.load(ckpt)#, map_location="cpu")
|
| 24 |
+
sd = pl_sd["state_dict"]
|
| 25 |
+
model = instantiate_from_config(config.model)
|
| 26 |
+
m, u = model.load_state_dict(sd, strict=False)
|
| 27 |
+
if len(m) > 0 and verbose:
|
| 28 |
+
print("missing keys:")
|
| 29 |
+
print(m)
|
| 30 |
+
if len(u) > 0 and verbose:
|
| 31 |
+
print("unexpected keys:")
|
| 32 |
+
print(u)
|
| 33 |
+
|
| 34 |
+
model.cuda()
|
| 35 |
+
model.eval()
|
| 36 |
+
return model
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def masking_embed(embedding, levels=1):
|
| 40 |
+
"""
|
| 41 |
+
size of embedding - nx1xd, n: number of samples, d - 512
|
| 42 |
+
replacing the last 128*levels from the embedding
|
| 43 |
+
"""
|
| 44 |
+
replace_size = 128*levels
|
| 45 |
+
random_noise = torch.randn(embedding.shape[0], embedding.shape[1], replace_size)
|
| 46 |
+
embedding[:, :, -replace_size:] = random_noise
|
| 47 |
+
return embedding
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# LOAD MODEL GLOBALLY
|
| 51 |
+
ckpt_path = '/globalscratch/mridul/ldm/butterflies/model_runs/2024-06-18T21-37-12_HLE_lr1e-6_custom_NEW/checkpoints/epoch=000233.ckpt'
|
| 52 |
+
config_path = '/globalscratch/mridul/ldm/butterflies/model_runs/2024-06-18T21-37-12_HLE_lr1e-6_custom_NEW/configs/2024-06-18T21-37-12-project.yaml'
|
| 53 |
+
config = OmegaConf.load(config_path) # TODO: Optionally download from same location as ckpt and chnage this logic
|
| 54 |
+
model = load_model_from_config(config, ckpt_path) # TODO: check path
|
| 55 |
+
|
| 56 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 57 |
+
model = model.to(device)
|
| 58 |
+
|
| 59 |
+
class_to_node = '/projects/ml4science/mridul/data/cambridge_butterfly/level_encodings/butterflies_hle_4levels_custom_NEW.pkl'
|
| 60 |
+
with open(class_to_node, 'rb') as pickle_file:
|
| 61 |
+
class_to_node_dict = pickle.load(pickle_file)
|
| 62 |
+
|
| 63 |
+
class_to_node_dict = {key.lower(): value for key, value in class_to_node_dict.items()}
|
| 64 |
+
species_name_to_class = {'_'.join(x.split('_')[2:]):x for x in class_to_node_dict.keys()}
|
| 65 |
+
|
| 66 |
+
species_names = list(species_name_to_class.keys())
|
| 67 |
+
|
| 68 |
+
def generate_image(fish_name, masking_level_input,
|
| 69 |
+
swap_fish_name, swap_level_input):
|
| 70 |
+
|
| 71 |
+
# fish_name = fish_name.lower()
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# label_to_class_mapping = {0: 'Alosa-chrysochloris', 1: 'Carassius-auratus', 2: 'Cyprinus-carpio', 3: 'Esox-americanus',
|
| 75 |
+
# 4: 'Gambusia-affinis', 5: 'Lepisosteus-osseus', 6: 'Lepisosteus-platostomus', 7: 'Lepomis-auritus', 8: 'Lepomis-cyanellus',
|
| 76 |
+
# 9: 'Lepomis-gibbosus', 10: 'Lepomis-gulosus', 11: 'Lepomis-humilis', 12: 'Lepomis-macrochirus', 13: 'Lepomis-megalotis',
|
| 77 |
+
# 14: 'Lepomis-microlophus', 15: 'Morone-chrysops', 16: 'Morone-mississippiensis', 17: 'Notropis-atherinoides',
|
| 78 |
+
# 18: 'Notropis-blennius', 19: 'Notropis-boops', 20: 'Notropis-buccatus', 21: 'Notropis-buchanani', 22: 'Notropis-dorsalis',
|
| 79 |
+
# 23: 'Notropis-hudsonius', 24: 'Notropis-leuciodus', 25: 'Notropis-nubilus', 26: 'Notropis-percobromus',
|
| 80 |
+
# 27: 'Notropis-stramineus', 28: 'Notropis-telescopus', 29: 'Notropis-texanus', 30: 'Notropis-volucellus',
|
| 81 |
+
# 31: 'Notropis-wickliffi', 32: 'Noturus-exilis', 33: 'Noturus-flavus', 34: 'Noturus-gyrinus', 35: 'Noturus-miurus',
|
| 82 |
+
# 36: 'Noturus-nocturnus', 37: 'Phenacobius-mirabilis'}
|
| 83 |
+
|
| 84 |
+
# def get_label_from_class(class_name):
|
| 85 |
+
# for key, value in label_to_class_mapping.items():
|
| 86 |
+
# if value == class_name:
|
| 87 |
+
# return key
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
if opt.plms:
|
| 91 |
+
sampler = PLMSSampler(model)
|
| 92 |
+
else:
|
| 93 |
+
sampler = DDIMSampler(model)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
prompt = class_to_node_dict[species_name_to_class[fish_name]]
|
| 97 |
+
|
| 98 |
+
### Trait Swapping
|
| 99 |
+
if swap_fish_name!='None':
|
| 100 |
+
# swap_fish_name = swap_fish_name.lower()
|
| 101 |
+
swap_level = int(swap_level_input.split(" ")[-1]) - 1
|
| 102 |
+
swap_fish = class_to_node_dict[species_name_to_class[swap_fish_name]]
|
| 103 |
+
|
| 104 |
+
swap_fish_split = swap_fish[0].split(',')
|
| 105 |
+
fish_name_split = prompt[0].split(',')
|
| 106 |
+
fish_name_split[swap_level] = swap_fish_split[swap_level]
|
| 107 |
+
|
| 108 |
+
prompt = [','.join(fish_name_split)]
|
| 109 |
+
|
| 110 |
+
all_samples=list()
|
| 111 |
+
with torch.no_grad():
|
| 112 |
+
with model.ema_scope():
|
| 113 |
+
uc = None
|
| 114 |
+
for n in trange(opt.n_iter, desc="Sampling"):
|
| 115 |
+
|
| 116 |
+
all_prompts = opt.n_samples * (prompt)
|
| 117 |
+
all_prompts = [tuple(all_prompts)]
|
| 118 |
+
c = model.get_learned_conditioning({'class_to_node': all_prompts})
|
| 119 |
+
if masking_level_input != "None":
|
| 120 |
+
masked_level = int(masking_level_input.split(" ")[-1])
|
| 121 |
+
masked_level = 4-masked_level
|
| 122 |
+
c = masking_embed(c, levels=masked_level)
|
| 123 |
+
shape = [3, 64, 64]
|
| 124 |
+
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
|
| 125 |
+
conditioning=c,
|
| 126 |
+
batch_size=opt.n_samples,
|
| 127 |
+
shape=shape,
|
| 128 |
+
verbose=False,
|
| 129 |
+
unconditional_guidance_scale=opt.scale,
|
| 130 |
+
unconditional_conditioning=uc,
|
| 131 |
+
eta=opt.ddim_eta)
|
| 132 |
+
|
| 133 |
+
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
| 134 |
+
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)
|
| 135 |
+
|
| 136 |
+
all_samples.append(x_samples_ddim)
|
| 137 |
+
|
| 138 |
+
###### to make grid
|
| 139 |
+
# additionally, save as grid
|
| 140 |
+
grid = torch.stack(all_samples, 0)
|
| 141 |
+
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
| 142 |
+
grid = make_grid(grid, nrow=opt.n_samples)
|
| 143 |
+
|
| 144 |
+
# to image
|
| 145 |
+
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
| 146 |
+
final_image = Image.fromarray(grid.astype(np.uint8))
|
| 147 |
+
# final_image.save(os.path.join(sample_path, f'{class_name.replace(" ", "-")}.png'))
|
| 148 |
+
|
| 149 |
+
return final_image
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
if __name__ == "__main__":
|
| 153 |
+
parser = argparse.ArgumentParser()
|
| 154 |
+
|
| 155 |
+
# parser.add_argument(
|
| 156 |
+
# "--prompt",
|
| 157 |
+
# type=str,
|
| 158 |
+
# nargs="?",
|
| 159 |
+
# default="a painting of a virus monster playing guitar",
|
| 160 |
+
# help="the prompt to render"
|
| 161 |
+
# )
|
| 162 |
+
|
| 163 |
+
# parser.add_argument(
|
| 164 |
+
# "--outdir",
|
| 165 |
+
# type=str,
|
| 166 |
+
# nargs="?",
|
| 167 |
+
# help="dir to write results to",
|
| 168 |
+
# default="outputs/txt2img-samples"
|
| 169 |
+
# )
|
| 170 |
+
parser.add_argument(
|
| 171 |
+
"--ddim_steps",
|
| 172 |
+
type=int,
|
| 173 |
+
default=200,
|
| 174 |
+
help="number of ddim sampling steps",
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
parser.add_argument(
|
| 178 |
+
"--plms",
|
| 179 |
+
action='store_true',
|
| 180 |
+
help="use plms sampling",
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
parser.add_argument(
|
| 184 |
+
"--ddim_eta",
|
| 185 |
+
type=float,
|
| 186 |
+
default=1.0,
|
| 187 |
+
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
|
| 188 |
+
)
|
| 189 |
+
parser.add_argument(
|
| 190 |
+
"--n_iter",
|
| 191 |
+
type=int,
|
| 192 |
+
default=1,
|
| 193 |
+
help="sample this often",
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
# parser.add_argument(
|
| 197 |
+
# "--H",
|
| 198 |
+
# type=int,
|
| 199 |
+
# default=256,
|
| 200 |
+
# help="image height, in pixel space",
|
| 201 |
+
# )
|
| 202 |
+
|
| 203 |
+
# parser.add_argument(
|
| 204 |
+
# "--W",
|
| 205 |
+
# type=int,
|
| 206 |
+
# default=256,
|
| 207 |
+
# help="image width, in pixel space",
|
| 208 |
+
# )
|
| 209 |
+
|
| 210 |
+
parser.add_argument(
|
| 211 |
+
"--n_samples",
|
| 212 |
+
type=int,
|
| 213 |
+
default=3,
|
| 214 |
+
help="how many samples to produce for the given prompt",
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
# parser.add_argument(
|
| 218 |
+
# "--output_dir_name",
|
| 219 |
+
# type=str,
|
| 220 |
+
# default='default_file',
|
| 221 |
+
# help="name of folder",
|
| 222 |
+
# )
|
| 223 |
+
|
| 224 |
+
# parser.add_argument(
|
| 225 |
+
# "--postfix",
|
| 226 |
+
# type=str,
|
| 227 |
+
# default='',
|
| 228 |
+
# help="name of folder",
|
| 229 |
+
# )
|
| 230 |
+
|
| 231 |
+
parser.add_argument(
|
| 232 |
+
"--scale",
|
| 233 |
+
type=float,
|
| 234 |
+
# default=5.0,
|
| 235 |
+
default=1.0,
|
| 236 |
+
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
|
| 237 |
+
)
|
| 238 |
+
opt = parser.parse_args()
|
| 239 |
+
|
| 240 |
+
title = "🎞️ Phylo Diffusion - Generating Butterfly Images Tool"
|
| 241 |
+
description = "Write the Species name to generate an image for.\n For Trait Masking: Specify the Level information as well"
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def load_example(prompt, level, option, components):
|
| 245 |
+
components['prompt_input'].value = prompt
|
| 246 |
+
components['masking_level_input'].value = level
|
| 247 |
+
# components['option'].value = option
|
| 248 |
+
|
| 249 |
+
def setup_interface():
|
| 250 |
+
with gr.Blocks() as demo:
|
| 251 |
+
|
| 252 |
+
gr.Markdown("# Phylo Diffusion - Generating Butterfly Images Tool")
|
| 253 |
+
gr.Markdown("### Write the Species name to generate a butterfly image")
|
| 254 |
+
gr.Markdown("### 1. Trait Masking: Specify the Level information as well")
|
| 255 |
+
gr.Markdown("### 2. Trait Swapping: Specify the species name to swap trait with at also at what level")
|
| 256 |
+
|
| 257 |
+
with gr.Row():
|
| 258 |
+
with gr.Column():
|
| 259 |
+
gr.Markdown("## Generate Images Based on Prompts")
|
| 260 |
+
gr.Markdown("Select a species to generate an image:")
|
| 261 |
+
# prompt_input = gr.Textbox(label="Species Name")
|
| 262 |
+
prompt_input = gr.Dropdown(label="Select Butterfly", choices=species_names, value="None")
|
| 263 |
+
gr.Markdown("Trait Masking")
|
| 264 |
+
with gr.Row():
|
| 265 |
+
masking_level_input = gr.Dropdown(label="Select Ancestral Level", choices=["None", "Level 3", "Level 2"], value="None")
|
| 266 |
+
# masking_node_input = gr.Dropdown(label="Select Internal", choices=["0", "1", "2", "3", "4", "5", "6", "7", "8"], value="0")
|
| 267 |
+
|
| 268 |
+
gr.Markdown("Trait Swapping")
|
| 269 |
+
with gr.Row():
|
| 270 |
+
swap_fish_name = gr.Dropdown(label="Select species Name to swap trait with:", choices=species_names, value="None")
|
| 271 |
+
swap_level_input = gr.Dropdown(label="Level of swapping", choices=["Level 3", "Level 2"], value="Level 3")
|
| 272 |
+
submit_button = gr.Button("Generate")
|
| 273 |
+
gr.Markdown("## Phylogeny Tree")
|
| 274 |
+
architecture_image = "phylogeny_tree.jpg" # Update this with the actual path
|
| 275 |
+
gr.Image(value=architecture_image, label="Phylogeny Tree")
|
| 276 |
+
|
| 277 |
+
with gr.Column():
|
| 278 |
+
|
| 279 |
+
gr.Markdown("## Generated Image")
|
| 280 |
+
output_image = gr.Image(label="Generated Image", width=768, height=256)
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
# # Place to put example buttons
|
| 284 |
+
# gr.Markdown("## Select an example:")
|
| 285 |
+
# examples = [
|
| 286 |
+
# ("Gambusia Affinis", "None", "", "Level 3"),
|
| 287 |
+
# ("Lepomis Auritus", "None", "", "Level 3"),
|
| 288 |
+
# ("Lepomis Auritus", "Level 3", "", "Level 3"),
|
| 289 |
+
# ("Noturus nocturnus", "None", "Notropis dorsalis", "Level 2")]
|
| 290 |
+
|
| 291 |
+
# for text, level, swap_text, swap_level in examples:
|
| 292 |
+
# if level == "None" and swap_text == "":
|
| 293 |
+
# button = gr.Button(f"Species: {text}")
|
| 294 |
+
# elif level != "None":
|
| 295 |
+
# button = gr.Button(f"Species: {text} | Masking: {level}")
|
| 296 |
+
# elif swap_text != "":
|
| 297 |
+
# button = gr.Button(f"Species: {text} | Swapping with {swap_text} at {swap_level} ")
|
| 298 |
+
# button.click(
|
| 299 |
+
# fn=lambda text=text, level=level, swap_text=swap_text, swap_level=swap_level: (text, level, swap_text, swap_level),
|
| 300 |
+
# inputs=[],
|
| 301 |
+
# outputs=[prompt_input, masking_level_input, swap_fish_name, swap_level_input]
|
| 302 |
+
# )
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
# Display an image of the architecture
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
submit_button.click(
|
| 309 |
+
fn=generate_image,
|
| 310 |
+
inputs=[prompt_input, masking_level_input,
|
| 311 |
+
swap_fish_name, swap_level_input],
|
| 312 |
+
outputs=output_image
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
return demo
|
| 316 |
+
|
| 317 |
+
# # Launch the interface
|
| 318 |
+
# iface = setup_interface()
|
| 319 |
+
|
| 320 |
+
# iface = gr.Interface(
|
| 321 |
+
# fn=generate_image,
|
| 322 |
+
# inputs=gr.Textbox(label="Prompt"),
|
| 323 |
+
# outputs=[
|
| 324 |
+
# gr.Image(label="Generated Image"),
|
| 325 |
+
# ]
|
| 326 |
+
# )
|
| 327 |
+
|
| 328 |
+
iface = setup_interface()
|
| 329 |
+
|
| 330 |
+
iface.launch(share=True)
|