Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,29 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from datasets import load_dataset
|
3 |
|
4 |
+
# Carga el modelo
|
5 |
+
model = gr.load("models/Qwen/Qwen2.5-Coder-32B-Instruct")
|
6 |
+
|
7 |
+
# Carga el dataset
|
8 |
+
dataset = load_dataset("Eim/laravel-docs")
|
9 |
+
|
10 |
+
# Funci贸n para procesar las entradas del chatbot
|
11 |
+
def chatbot(input_text):
|
12 |
+
# Filtra el dataset para obtener informaci贸n relevante
|
13 |
+
relevant_docs = [
|
14 |
+
doc["content"] for doc in dataset["train"]
|
15 |
+
if input_text.lower() in doc["content"].lower()
|
16 |
+
]
|
17 |
+
|
18 |
+
# Respuesta del modelo
|
19 |
+
model_response = model(input_text)
|
20 |
+
|
21 |
+
# Construye la respuesta personalizada
|
22 |
+
if relevant_docs:
|
23 |
+
additional_info = "\n\n".join(relevant_docs[:3]) # Limita a 3 documentos relevantes
|
24 |
+
return f"{model_response}\n\nDocumentaci贸n relevante:\n{additional_info}"
|
25 |
+
else:
|
26 |
+
return model_response
|
27 |
+
|
28 |
+
# Lanza la aplicaci贸n con Gradio
|
29 |
+
gr.Interface(fn=chatbot, inputs="text", outputs="text").launch()
|