Spaces:
Running
Running
import torch | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
from urllib.parse import urlparse, parse_qs | |
import tempfile | |
import time | |
import os | |
import numpy as np | |
# Constants | |
MODEL_NAME = "dataprizma/whisper-large-v3-turbo" | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1000 | |
YT_LENGTH_LIMIT_S = 3600 # 1 hour limit | |
# Device selection | |
device = 0 if torch.cuda.is_available() else "cpu" | |
# Load Whisper pipeline | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=9, | |
device=device, | |
model_kwargs={ | |
# "torch_dtype": torch.float16, | |
"attn_implementation": "eager" | |
}, | |
) | |
# Transcription function (Fix applied) | |
def transcribe(audio_file, task): | |
if audio_file is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting.") | |
# Open file as binary to ensure correct data type | |
with open(audio_file, "rb") as f: | |
audio_data = f.read() | |
# Read audio using ffmpeg_read (correcting input format) | |
audio_array = ffmpeg_read(audio_data, pipe.feature_extractor.sampling_rate) | |
duration = len(audio_array) / pipe.feature_extractor.sampling_rate | |
print(f"Audio duration: {duration:.2f} seconds") | |
# Convert to proper format | |
inputs = { | |
"array": np.array(audio_array), | |
"sampling_rate": pipe.feature_extractor.sampling_rate | |
} | |
generate_kwargs = { | |
"task": task, | |
"no_speech_threshold": 0.3, | |
"logprob_threshold": -1.0, | |
"compression_ratio_threshold": 2.4 | |
} | |
# Perform transcription | |
result = pipe( | |
inputs, | |
batch_size=BATCH_SIZE, | |
generate_kwargs=generate_kwargs, | |
return_timestamps=False | |
) | |
return result["text"] | |
# Gradio UI | |
demo = gr.Blocks() | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(type="filepath", label="Audio file"), | |
gr.Radio(["transcribe", "translate"], label="Task"), | |
], | |
outputs="text", | |
title="Whisper Large V3: Transcribe Audio", | |
description="Whisper Large V3 fine-tuned for Uzbek language by Dataprizma", | |
flagging_mode="never", | |
) | |
with demo: | |
gr.TabbedInterface([file_transcribe], ["Audio file"]) | |
demo.launch() | |