Spaces:
Running
Running
import torch | |
import gradio as gr | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import numpy as np | |
MODEL_NAME = "dataprizma/whisper-large-v3-turbo" | |
BATCH_SIZE = 8 | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=9, | |
device=device, | |
model_kwargs={ | |
"attn_implementation": "eager" | |
}, | |
) | |
def transcribe(audio_file): | |
if audio_file is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting.") | |
with open(audio_file, "rb") as f: | |
audio_data = f.read() | |
audio_array = ffmpeg_read(audio_data, sampling_rate=pipe.feature_extractor.sampling_rate) | |
duration = len(audio_array) / pipe.feature_extractor.sampling_rate | |
print(f"Audio duration: {duration:.2f} seconds") | |
result = pipe( | |
inputs=audio_array, | |
batch_size=BATCH_SIZE, | |
return_timestamps=False, | |
generate_kwargs={ | |
"task": "transcribe", | |
"no_speech_threshold": 0.4, | |
"logprob_threshold": -1.0, | |
"compression_ratio_threshold": 2.4 | |
} | |
) | |
return result["text"] if isinstance(result, dict) else result | |
demo = gr.Blocks() | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(type="filepath", label="Audio file"), | |
outputs="text", | |
title="Whisper Large V3: Transcribe Audio", | |
description="Whisper Large V3 fine-tuned for Uzbek language by Dataprizma", | |
) | |
with demo: | |
gr.TabbedInterface([file_transcribe], ["Audio file"]) | |
demo.launch() | |