Spaces:
Sleeping
Sleeping
File size: 21,831 Bytes
7e8ee64 b455c9b 7e8ee64 15ee1ac b455c9b 15ee1ac b455c9b 7e8ee64 15ee1ac b455c9b 7e8ee64 15ee1ac 7e8ee64 b455c9b 834e130 15ee1ac b455c9b 834e130 15ee1ac 7e8ee64 15ee1ac 7e8ee64 b455c9b 438e750 7e8ee64 b455c9b 6171624 15ee1ac 7e8ee64 15ee1ac b455c9b 15ee1ac b455c9b 15ee1ac b455c9b 15ee1ac 438e750 b455c9b 15ee1ac b455c9b 438e750 b455c9b 7e8ee64 15ee1ac b455c9b 7e8ee64 b455c9b 438e750 b455c9b 7e8ee64 b455c9b 7e8ee64 b455c9b 7e8ee64 b455c9b 438e750 b455c9b 438e750 b455c9b 438e750 b455c9b 15ee1ac b455c9b 15ee1ac b455c9b 438e750 b455c9b 813fec2 b455c9b 438e750 b455c9b 438e750 b455c9b 438e750 b455c9b 438e750 b455c9b 438e750 b455c9b 438e750 b455c9b 438e750 b455c9b 438e750 b455c9b 438e750 b455c9b 7e8ee64 b455c9b 7e8ee64 b455c9b 7e8ee64 b455c9b 7e8ee64 b455c9b 7e8ee64 b455c9b 7e8ee64 b455c9b 438e750 b455c9b 438e750 b455c9b 7e8ee64 438e750 15ee1ac 438e750 b455c9b 7e8ee64 b455c9b 7e8ee64 b455c9b 15ee1ac b455c9b 438e750 b455c9b 438e750 b455c9b 7e8ee64 b455c9b 7e8ee64 b455c9b 7e8ee64 b455c9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import gradio as gr
import google.generativeai as genai
import re
import json
import os # Good practice to import os if using env variables later
# --- Constants for Limits ---
TITLE_MAX_LEN = 60
BRAND_NAME_MAX_LEN = 50
BULLET_POINT_MAX_LEN = 256
BULLET_POINT_MIN_LEN = 240 # Keep this if you want to check minimum length later
def count_characters(text):
"""Count characters in text."""
return len(text) if text else 0
def format_output(title, brand_name, bullet1, bullet2, suggested_keywords=None):
"""Format the output with character counts (reflecting potentially truncated lengths)."""
# Display the actual length after potential truncation
output = f"Title ({count_characters(title)}/{TITLE_MAX_LEN} characters):\n{title}\n\n"
output += f"Brand Name ({count_characters(brand_name)}/{BRAND_NAME_MAX_LEN} characters):\n{brand_name}\n\n"
output += f"Bullet Point 1 ({count_characters(bullet1)}/{BULLET_POINT_MAX_LEN} characters):\n{bullet1}\n\n"
output += f"Bullet Point 2 ({count_characters(bullet2)}/{BULLET_POINT_MAX_LEN} characters):\n{bullet2}"
if suggested_keywords:
output += f"\n\nSuggested Additional Keywords:\n{suggested_keywords}"
return output
def generate_prompt(quote, niche, target, keywords):
"""Generate the prompt for Gemini API."""
# Keep the detailed prompt instructions as they help guide the AI
combined_prompt = f"""You are an Amazon Merch on Demand SEO expert specializing in creating optimized t-shirt and apparel listings.
MY INPUT IS ABOUT: A {niche} t-shirt with the design/quote: "{quote}" for {target}.
YOU MUST ONLY create an Amazon apparel listing about that EXACT input - no substitutions or different themes allowed.
Generate a listing that includes:
1. Title (try for exactly {TITLE_MAX_LEN} characters): Must include "{niche}" and reference the design/quote "{quote}" and target audience "{target}"
2. Brand Name (try for 34-{BRAND_NAME_MAX_LEN} characters): Create a fitting brand name for this specific {niche} apparel for {target}
3. Bullet Point 1 (try for {BULLET_POINT_MIN_LEN}-{BULLET_POINT_MAX_LEN} characters): Highlight key features using ALL CAPS for the first 2-3 words. Focus ONLY on the design, quote, and niche theme.
4. Bullet Point 2 (try for {BULLET_POINT_MIN_LEN}-{BULLET_POINT_MAX_LEN} characters): Highlight additional features using ALL CAPS for the first 2-3 words. Focus ONLY on the design, quote, and niche theme.
IMPORTANT RULES — STRICT ENFORCEMENT:
- DO NOT include generic phrases like "PREMIUM QUALITY" or references to material quality
- DO NOT include phrases like "This comfortable and stylish tee is made with high-quality materials for a soft feel and long-lasting wear"
- Bullet point 1 must be between {BULLET_POINT_MIN_LEN} and {BULLET_POINT_MAX_LEN} characters. Aim for the higher end.
- Bullet point 2 must be between {BULLET_POINT_MIN_LEN} and {BULLET_POINT_MAX_LEN} characters. Aim for the higher end.
- DO NOT exceed the character limits ({TITLE_MAX_LEN} for title, {BRAND_NAME_MAX_LEN} for brand, {BULLET_POINT_MAX_LEN} for bullets).
- Count characters carefully. Ensure compliance before outputting.
- Focus ONLY on the specific design, niche, and quote provided
- Every sentence must directly relate to the quote, niche theme, and target audience
- Do not include any content that strays from the specific theme provided
The listing should be specifically for t-shirts, hoodies, or sweaters for the Amazon Merch on Demand program.
The listing MUST be about: {niche} + {quote} + for {target}. Do not generate content about other holidays, quotes, or audiences.
Use these specific keywords in your listing: {keywords}
Respond ONLY with a JSON object in this format:
{{
"title": "The title aiming for {TITLE_MAX_LEN} characters",
"brand_name": "Brand name aiming for 34-{BRAND_NAME_MAX_LEN} characters",
"bullet_point_1": "First bullet point aiming for {BULLET_POINT_MIN_LEN}-{BULLET_POINT_MAX_LEN} characters",
"bullet_point_2": "Second bullet point aiming for {BULLET_POINT_MIN_LEN}-{BULLET_POINT_MAX_LEN} characters",
"suggested_keywords": "5 additional keywords separated by commas"
}}
REMINDER: Make sure to count the characters carefully. Aim for Title exactly {TITLE_MAX_LEN} characters. Aim for Bullet points 1 and 2 between {BULLET_POINT_MIN_LEN}-{BULLET_POINT_MAX_LEN} characters.
STRICT ENFORCEMENT: Bullet point 1 and 2 MUST be between {BULLET_POINT_MIN_LEN} and {BULLET_POINT_MAX_LEN} characters. If it's {BULLET_POINT_MAX_LEN+1}+, the result is invalid. Carefully count and ensure compliance.
"""
return combined_prompt
def generate_multiple_variations_prompt(quote, niche, target, keywords):
"""Generate the prompt for multiple variations of title and brand name."""
combined_prompt = f"""You are an Amazon Merch on Demand SEO expert specializing in creating optimized t-shirt and apparel listings.
MY INPUT IS ABOUT: A {niche} t-shirt with the design/quote: "{quote}" for {target}.
YOU MUST ONLY create variations about that EXACT input - no substitutions or different themes allowed.
Generate 3 different variations for the Title and Brand Name based on the provided information.
All variations MUST be about {niche} + "{quote}" + for {target} audience.
The titles MUST include:
- The specific holiday/event: {niche}
- Reference to the quote/design: "{quote}"
- The target audience: {target}
Focus only on t-shirts, sweaters, and hoodies for the Amazon Merch on Demand program.
All titles must aim for exactly {TITLE_MAX_LEN} characters and brand names between 34-{BRAND_NAME_MAX_LEN} characters.
Respond ONLY with a JSON object in this format:
{{
"title_variations": [
"Title variation 1 - aim for {TITLE_MAX_LEN} characters, count carefully",
"Title variation 2 - aim for {TITLE_MAX_LEN} characters, count carefully",
"Title variation 3 - aim for {TITLE_MAX_LEN} characters, count carefully"
],
"brand_name_variations": [
"Brand name variation 1 (aim for 34-{BRAND_NAME_MAX_LEN} characters)",
"Brand name variation 2 (aim for 34-{BRAND_NAME_MAX_LEN} characters)",
"Brand name variation 3 (aim for 34-{BRAND_NAME_MAX_LEN} characters)"
]
}}
REMINDER: Make sure each title aims for EXACTLY {TITLE_MAX_LEN} characters. Count carefully!"""
return combined_prompt
def generate_amazon_listing(api_key, quote, niche, target, keywords):
"""Generate Amazon listing using Gemini API, enforcing character limits."""
# Input validation
if not api_key:
return "Error: Please enter a valid Gemini API key"
if not quote or not niche or not target:
return "Error: Please fill in all required fields (Quote, Holiday/Event, and Target Audience)"
try:
# Configure the Gemini API with the provided key
# Consider using environment variables for production:
# api_key = os.getenv("GEMINI_API_KEY") or api_key_input
genai.configure(api_key=api_key)
# Create model with optimized settings
model = genai.GenerativeModel(
'gemini-1.5-pro', # Or 'gemini-1.5-flash' for potentially faster/cheaper generation
generation_config={
"temperature": 0.3, # Lower temperature for more predictable output
"top_p": 0.8,
"max_output_tokens": 1024, # Maximum tokens the API can *return*
# Note: 'max_output_tokens' doesn't directly control character count precisely
"response_mime_type": "application/json" # Request JSON directly
}
)
# Generate the main listing
prompt = generate_prompt(quote, niche, target, keywords)
try:
# --- Generate Main Listing Content ---
response = model.generate_content(prompt)
# Since we requested JSON, parse it directly. Add error handling.
try:
# Access the text part and load as JSON
response_text = response.text
# Sometimes the API might still wrap it in markdown, try to strip it
json_match = re.search(r'```json\s*({.*?})\s*```', response_text, re.DOTALL | re.IGNORECASE)
if json_match:
json_str = json_match.group(1)
else:
# Fallback if no markdown backticks are found
json_str = response_text.strip()
result = json.loads(json_str)
except (json.JSONDecodeError, AttributeError, IndexError) as json_err:
# Handle cases where response.text is empty, not valid JSON, or API returned unexpected format
print(f"JSON Parsing Error: {json_err}")
print(f"Raw response text: {getattr(response, 'text', 'N/A')}") # Log raw response for debugging
# Check for safety blocks
if response.prompt_feedback.block_reason:
return f"Error: Generation blocked due to: {response.prompt_feedback.block_reason}. Content filters may have been triggered."
return "Error: Could not parse JSON response from Gemini API. The API might have returned an unexpected format or an empty response. Please try again."
# --- ENFORCE CHARACTER LIMITS ---
# Get raw values and immediately truncate if they exceed the MAX limit
title = result.get("title", "")[:TITLE_MAX_LEN]
brand_name = result.get("brand_name", "")[:BRAND_NAME_MAX_LEN]
bullet1 = result.get("bullet_point_1", "")[:BULLET_POINT_MAX_LEN]
bullet2 = result.get("bullet_point_2", "")[:BULLET_POINT_MAX_LEN]
suggested_keywords = result.get("suggested_keywords", "Error generating suggested keywords") # Keywords don't usually need truncation
# --- VALIDATION (using potentially truncated values) ---
# Validate that the output actually matches the input criteria (optional but good)
# Check if *any* part of the target audience is in the title if it's comma-separated
target_parts = [t.strip().lower() for t in target.split(',')]
title_lower = title.lower()
if not (quote.lower() in title_lower or
niche.lower() in title_lower or
any(t_part in title_lower for t_part in target_parts)):
return f"Error: Generated title ('{title}') doesn't seem to strongly match the requested theme: '{quote}', '{niche}', or '{target}'. Please try again or adjust input."
# --- Optional: Validate the *lower* bound for bullet points ---
# Uncomment these lines if you strictly need the bullets to be AT LEAST min_len characters
# Note: This check happens *after* truncation, so if truncation occurred, it might pass this check.
# if len(bullet1) < BULLET_POINT_MIN_LEN:
# return f"Error: Bullet point 1 length ({len(bullet1)}) is less than the required minimum {BULLET_POINT_MIN_LEN} characters after generation/truncation. Please try again."
# if len(bullet2) < BULLET_POINT_MIN_LEN:
# return f"Error: Bullet point 2 length ({len(bullet2)}) is less than the required minimum {BULLET_POINT_MIN_LEN} characters after generation/truncation. Please try again."
# Check for generic content in bullet points
generic_phrases = ["premium quality", "high-quality materials", "soft feel", "long-lasting wear",
"comfortable and stylish"]
bullet1_lower = bullet1.lower()
bullet2_lower = bullet2.lower()
for phrase in generic_phrases:
if phrase in bullet1_lower or phrase in bullet2_lower:
return f"Error: Generated bullet points contain disallowed generic phrase '{phrase}'. Please try again."
# Format main output first - using the enforced length values
main_output = format_output(
title,
brand_name,
bullet1,
bullet2,
suggested_keywords
)
# --- Generate Variations (Optional Second Call) ---
try:
variations_prompt = generate_multiple_variations_prompt(quote, niche, target, keywords)
# Use a separate model instance or reuse if configuration is the same
# Using the same model instance here
response_var = model.generate_content(
variations_prompt,
generation_config={ # Can reuse or adjust config for variations
"temperature": 0.4, # Slightly higher temp for more variety
"top_p": 0.8,
"max_output_tokens": 1024,
"response_mime_type": "application/json"
}
)
# Parse variations JSON
try:
response_var_text = response_var.text
# Try stripping markdown again
json_match_var = re.search(r'```json\s*({.*?})\s*```', response_var_text, re.DOTALL | re.IGNORECASE)
if json_match_var:
json_str_var = json_match_var.group(1)
else:
json_str_var = response_var_text.strip()
variations = json.loads(json_str_var)
# Format variations output, enforcing limits here too
variations_output = "\n\nADDITIONAL VARIATIONS:\n\n"
variations_output += "Title Variations:\n"
for i, var in enumerate(variations.get("title_variations", []), 1):
truncated_var = var[:TITLE_MAX_LEN] # Enforce limit
variations_output += f"{i}. {truncated_var} ({count_characters(truncated_var)}/{TITLE_MAX_LEN} characters)\n"
variations_output += "\nBrand Name Variations:\n"
for i, var in enumerate(variations.get("brand_name_variations", []), 1):
truncated_var = var[:BRAND_NAME_MAX_LEN] # Enforce limit
variations_output += f"{i}. {truncated_var} ({count_characters(truncated_var)}/{BRAND_NAME_MAX_LEN} characters)\n"
# Combine main output with variations
return main_output + variations_output
except (json.JSONDecodeError, AttributeError, IndexError) as json_var_err:
print(f"JSON Parsing Error (Variations): {json_var_err}")
print(f"Raw variations response text: {getattr(response_var, 'text', 'N/A')}")
# Check for safety blocks on variations
if response_var.prompt_feedback.block_reason:
return main_output + f"\n\n(Could not generate variations: Blocked - {response_var.prompt_feedback.block_reason})"
return main_output + "\n\n(Could not parse variations response)"
except genai.types.generation_types.BlockedPromptException as var_block_error:
return main_output + f"\n\n(Variations prompt blocked: {var_block_error})"
except Exception as var_error:
# Catch other errors during variation generation
print(f"Error generating variations: {var_error}") # Log the error
return main_output + f"\n\n(Could not generate variations due to an error)"
except genai.types.generation_types.BlockedPromptException as block_error:
# Catch blocked prompts specifically for better feedback
return f"Error: The main prompt was blocked by Gemini API safety filters: {block_error}. Please modify your input and try again."
except Exception as e:
# Catch other potential errors during the main API call
print(f"Error during main listing generation: {e}") # Log the error
# You might want to check response.candidates[0].finish_reason if available
# finish_reason = getattr(response.candidates[0], 'finish_reason', 'UNKNOWN')
# safety_ratings = getattr(response.candidates[0].safety_ratings, 'name', 'UNKNOWN')
return f"Error generating main listing. Please check logs or try again."
except Exception as e:
# Catch configuration errors or other unexpected issues
print(f"General Error: {e}") # Log the error
return f"An unexpected error occurred: {str(e)}"
# --- Create the Gradio Interface ---
def create_interface():
with gr.Blocks(title="Amazon Merch on Demand Listing Generator", theme=gr.themes.Soft()) as app:
gr.Markdown("# Amazon Merch on Demand Listing Generator")
gr.Markdown("Generate SEO-optimized t-shirt and apparel listings for Amazon Merch on Demand using Gemini AI. Character limits are enforced.")
with gr.Row():
with gr.Column(scale=1):
# Recommend using environment variable for API key in real deployments
api_key = gr.Textbox(
label="Gemini API Key",
placeholder="Enter your Gemini API key (or leave blank if set as environment variable)",
type="password",
# value=os.getenv("GEMINI_API_KEY", "") # Pre-fill if env var exists
)
quote = gr.Textbox(label="Quote/Design/Idea", placeholder="e.g., Lucky To Be A Teacher", value="Rainbow with a quote \"Lucky To Be A Teacher\"")
niche = gr.Textbox(label="Niche/Holiday/Event", placeholder="e.g., St Patrick's Day", value="St Patricks Day")
target = gr.Textbox(label="Target Audience", placeholder="e.g., Teacher, Mom, Dad", value="Teacher, Teacher Mom")
keywords = gr.Textbox(
label="Target Keywords (comma-separated)",
placeholder="Enter keywords relevant to your design",
lines=5,
value="lucky, teacher, rainbow, st, patricks, day, t-shirt, patrick's, outfit, design, leopard, cheetah, print, shamrock, clover, perfect, men, women, teachers, celebrate, saint, patrick, special, unique, makes, great, gifts, idea, substitute, love, irish, culture, pattys, holiday, teach, shamrocks, cute, design, awesome, show, students"
)
submit_btn = gr.Button("Generate Amazon Listing", variant="primary")
with gr.Column(scale=2):
status = gr.Textbox(label="Status", value="Ready", interactive=False, lines=1)
output = gr.Textbox(label="Generated Amazon Listing", lines=25, interactive=True) # Make output selectable
def on_submit(api_key_input, quote, niche, target, keywords):
# Use environment variable if input is blank (optional but good practice)
# final_api_key = os.getenv("GEMINI_API_KEY") or api_key_input
final_api_key = api_key_input # Keep it simple for now
if not final_api_key:
# Update status first before returning error message
yield "Error: Gemini API Key is required.", ""
return # Stop execution
# Update status to indicate processing
yield "Generating listing... This may take a moment.", "Processing..."
# Generate the listing
result = generate_amazon_listing(final_api_key, quote, niche, target, keywords)
# Update status and output based on the result
if "Error:" in result:
yield f"Finished with Error.", result
else:
yield "Listing generated successfully!", result
submit_btn.click(
fn=on_submit,
inputs=[api_key, quote, niche, target, keywords],
outputs=[status, output],
show_progress="full" # Show more detailed progress
)
gr.Markdown("## Example Input")
gr.Markdown('''
Use the pre-filled example above or enter your own details:
* **Quote/Design:** The core text or visual idea on the shirt.
* **Niche/Holiday:** The specific event, theme, or category (e.g., Halloween, Fishing, Dog Lover).
* **Target Audience:** Who is this shirt for? (e.g., Nurse, Engineer, Grandpa).
* **Keywords:** Relevant terms customers might search for.
''')
gr.Markdown("""
## Notes & Troubleshooting
* **Character Limits:** The app attempts to generate text close to the limits requested in the prompt, but **strictly enforces maximum lengths** by truncating if necessary (Title: 60, Brand: 50, Bullets: 256). The displayed count reflects the final length.
* **API Key:** For security, consider setting your Gemini API Key as an environment variable (`GEMINI_API_KEY`) instead of pasting it directly, especially if deploying publicly.
* **Errors:** If you see errors related to 'BlockedPromptException' or 'Safety', your input might have triggered content filters. Try rephrasing. Other errors might relate to API connectivity or quota.
* **Variations:** The app generates the main listing first, then attempts to generate title/brand variations. Variation generation might fail separately without affecting the main listing.
* **JSON Request:** The app now explicitly requests JSON output from the API (`response_mime_type`).
""")
return app
# --- Create and Launch the Gradio App ---
app = create_interface()
# Launch the app (remove debug=True for production)
if __name__ == "__main__":
# Set share=True to get a public link (useful for temporary sharing)
app.launch(debug=True)
# app.launch() # For deployment (e.g., Hugging Face Spaces) |