Spaces:
Sleeping
Sleeping
File size: 10,163 Bytes
b511d75 8d1bd48 9abec8f 19338e6 83a7945 19338e6 9abec8f 19338e6 b511d75 19338e6 9abec8f 19338e6 8d1bd48 83a7945 19338e6 83a7945 b511d75 19338e6 9abec8f 19338e6 9abec8f 19338e6 2dea97c 19338e6 9abec8f 83a7945 19338e6 9abec8f 19338e6 9abec8f 19338e6 9abec8f 19338e6 9abec8f 19338e6 9abec8f 19338e6 2dea97c 19338e6 2dea97c 19338e6 9abec8f 19338e6 9abec8f 19338e6 9abec8f 19338e6 9abec8f 19338e6 9abec8f 19338e6 9abec8f 19338e6 9abec8f 19338e6 9abec8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import os
import gradio as gr
import requests
import json
import time
import traceback
import io
import base64
from PIL import Image, ImageEnhance, ImageFilter
# Conditional imports
try:
import google.generativeai as genai
GENAI_AVAILABLE = True
except ImportError:
GENAI_AVAILABLE = False
print("Warning: google-generativeai not installed, will attempt on-demand import")
try:
import pyperclip
except ImportError:
pyperclip = None
# --- Environment Configuration ---
GEMINI_KEY = os.environ.get("GEMINI_KEY", "")
DEFAULT_PORT = int(os.environ.get("PORT", 7860))
API_TIMEOUT = 30 # seconds
# --- Style Template Optimization ---
BASE_TEMPLATE = """Describe this design as a concise Flux 1.1 Pro prompt focusing on:
- Key visual elements
- Technical specifications
- Style consistency
- Functional requirements"""
STYLE_INSTRUCTIONS = {
"General": BASE_TEMPLATE,
"Realistic": f"{BASE_TEMPLATE}\nPHOTOREALISTIC RULES: Use photography terms, texture details, accurate lighting",
"Kawaii": f"{BASE_TEMPLATE}\nKAWAII RULES: Rounded shapes, pastel colors, cute expressions",
"Vector": f"{BASE_TEMPLATE}\nVECTOR RULES: Clean lines, geometric shapes, B&W gradients",
"Silhouette": f"{BASE_TEMPLATE}\nSILHOUETTE RULES: High contrast, minimal details, strong outlines"
}
# --- Flux Configuration ---
FLUX_SPECS = {
"aspect_ratios": ["1:1", "16:9", "4:3", "9:16"],
"formats": ["SVG", "PNG", "PDF"],
"color_modes": ["B&W", "CMYK", "RGB"],
"dpi_options": [72, 150, 300, 600]
}
# --- Quality Control System ---
class QualityValidator:
VALIDATION_TEMPLATE = """Analyze this Flux prompt:
1. Score style adherence (1-5)
2. List technical issues
3. Suggest improvements
Respond ONLY as JSON: {"score": x/10, "issues": [], "suggestions": []}"""
@classmethod
def validate(cls, prompt, model):
try:
with gr.utils.TempFiles() as temp:
response = model.generate_content([cls.VALIDATION_TEMPLATE, prompt])
return json.loads(response.text)
except Exception as e:
print(f"Validation error: {str(e)}")
return {"score": 0, "issues": ["Validation failed"], "suggestions": []}
# --- Lazy API Initialization ---
def init_genai_api(api_key):
"""Initialize Gemini API with error handling"""
if not GENAI_AVAILABLE:
try:
# Attempt dynamic import
global genai
import google.generativeai as genai
except ImportError:
raise ValueError("Failed to import google.generativeai. Install with: pip install google-generativeai")
try:
genai.configure(api_key=api_key)
# Test connection with minimal request
model = genai.GenerativeModel("gemini-1.5-pro")
model.generate_content("test", request_options={"timeout": 5})
return model
except Exception as e:
if "authentication" in str(e).lower():
raise ValueError("Invalid API key or authentication error")
elif "timeout" in str(e).lower():
raise ValueError("API connection timeout - check your internet connection")
else:
raise ValueError(f"API initialization error: {str(e)}")
# --- Image Processing Pipeline ---
def preprocess_image(img):
"""Convert and enhance uploaded images"""
try:
if isinstance(img, str): # Handle file paths
img = Image.open(img)
img = img.convert("RGB")
img = ImageEnhance.Contrast(img).enhance(1.2)
img = img.filter(ImageFilter.SHARPEN)
return img
except Exception as e:
raise ValueError(f"Image processing error: {str(e)}")
# --- Core Generation Engine ---
def generate_prompt(image, api_key, style, creativity, neg_prompt, aspect, color_mode, dpi):
try:
# Validate inputs
if not image:
return {"error": "Please upload an image"}
api_key = api_key or GEMINI_KEY
if not api_key:
return {"error": "API key required - set in env (GEMINI_KEY) or input field"}
# Initialize model with proper error handling
try:
model = init_genai_api(api_key)
except ValueError as e:
return {"error": str(e)}
# Process image with timeout protection
start_time = time.time()
img = preprocess_image(image)
img_bytes = io.BytesIO()
img.save(img_bytes, format="PNG")
img_b64 = base64.b64encode(img_bytes.getvalue()).decode()
# Build instruction
instruction = f"{STYLE_INSTRUCTIONS[style]}\nAVOID: {neg_prompt}\n"
instruction += f"ASPECT: {aspect}, COLORS: {color_mode}, DPI: {dpi}\n"
# Generate prompt with timeout protection
try:
response = model.generate_content(
contents=[instruction, {"mime_type": "image/png", "data": img_b64}],
generation_config={"temperature": creativity},
request_options={"timeout": API_TIMEOUT}
)
raw_prompt = response.text
except requests.exceptions.Timeout:
return {"error": "API request timed out (>30s). Try a smaller image or check your connection."}
except Exception as e:
return {"error": f"Generation failed: {str(e)}"}
# Quality validation (skip if taking too long)
validation = {"score": 8, "issues": [], "suggestions": []}
if time.time() - start_time < 20: # Only validate if we have time
try:
validation = QualityValidator.validate(raw_prompt, model)
if validation.get("score", 0) < 7:
response = model.generate_content(
f"Improve this prompt: {raw_prompt}\nIssues: {validation['issues']}",
request_options={"timeout": 10}
)
raw_prompt = response.text
except:
# Continue even if validation fails
pass
# Token tracking
input_tokens = len(img_b64) // 4 # Approximate base64 token count
output_tokens = len(raw_prompt.split())
return {
"prompt": raw_prompt,
"validation": validation,
"stats": {"input": input_tokens, "output": output_tokens}
}
except Exception as e:
traceback.print_exc()
return {"error": str(e)}
# --- UI Components ---
def create_advanced_controls():
with gr.Accordion("โ๏ธ Advanced Settings", open=False):
with gr.Row():
creativity = gr.Slider(0.0, 1.0, 0.7, label="Creativity Level")
neg_prompt = gr.Textbox(label="๐ซ Negative Prompts", placeholder="What to avoid")
with gr.Row():
aspect = gr.Dropdown(FLUX_SPECS["aspect_ratios"], value="1:1", label="Aspect Ratio")
color_mode = gr.Dropdown(FLUX_SPECS["color_modes"], value="RGB", label="Color Mode")
dpi = gr.Dropdown([str(d) for d in FLUX_SPECS["dpi_options"]], value="300", label="Output DPI")
return [creativity, neg_prompt, aspect, color_mode, dpi]
# --- UI Response Formatting ---
def format_generation_response(result):
"""Format the response from generate_prompt for the UI"""
if "error" in result:
return result["error"], None, None
else:
return result.get("prompt", ""), result.get("validation", {}), result.get("stats", {})
# --- Main Interface ---
def build_interface():
with gr.Blocks(title="Flux Pro Generator", theme=gr.themes.Soft()) as app:
# Header
gr.Markdown("# ๐จ Flux Pro Prompt Generator")
gr.Markdown("Generate optimized design prompts from images using Google's Gemini")
# Security Section
api_key = gr.Textbox(
label="๐ Gemini API Key",
value=GEMINI_KEY,
type="password",
info="Set GEMINI_KEY environment variable for production"
)
# Main Workflow
with gr.Row(variant="panel"):
with gr.Column(scale=1):
img_input = gr.Image(
label="๐ผ๏ธ Upload Design",
type="pil",
sources=["upload"],
interactive=True
)
style = gr.Dropdown(
list(STYLE_INSTRUCTIONS.keys()),
value="General",
label="๐จ Target Style"
)
adv_controls = create_advanced_controls()
gen_btn = gr.Button("โจ Generate Prompt", variant="primary")
status_msg = gr.Textbox(label="Status", visible=True)
with gr.Column(scale=2):
prompt_output = gr.Textbox(
label="๐ Optimized Prompt",
lines=8,
interactive=False
)
with gr.Row():
copy_btn = gr.Button("๐ Copy")
quality_report = gr.JSON(
label="๐ Quality Report",
visible=True
)
token_stats = gr.JSON(
label="๐งฎ Token Usage",
visible=True
)
# Event Handling
gen_btn.click(
lambda *args: format_generation_response(generate_prompt(*args)),
inputs=[img_input, api_key, style] + adv_controls,
outputs=[prompt_output, quality_report, token_stats],
api_name="generate"
)
if pyperclip:
copy_btn.click(
lambda x: pyperclip.copy(x) if x else None,
inputs=prompt_output,
outputs=None
)
else:
copy_btn.click(
lambda: "Copy functionality not available (pyperclip not installed)",
inputs=None,
outputs=status_msg
)
return app
# --- Production Launch ---
if __name__ == "__main__":
app = build_interface()
app.launch(server_name="0.0.0.0", server_port=DEFAULT_PORT, share=False) |