File size: 6,743 Bytes
b511d75
8d1bd48
19338e6
83a7945
19338e6
9abec8f
 
 
 
19338e6
 
 
cce6f28
19338e6
 
 
 
 
 
 
8d1bd48
83a7945
19338e6
 
 
 
 
 
 
 
 
 
 
 
 
83a7945
b511d75
19338e6
 
 
2dea97c
19338e6
 
 
 
 
 
 
 
 
 
 
 
 
ca91c2d
 
19338e6
 
ca91c2d
19338e6
ca91c2d
9abec8f
cb93ca5
 
 
 
ca91c2d
cb93ca5
 
ca91c2d
 
19338e6
ca91c2d
19338e6
 
 
 
 
ca91c2d
19338e6
 
 
ca91c2d
9abec8f
 
 
cb93ca5
9abec8f
19338e6
9abec8f
ca91c2d
9abec8f
ca91c2d
9abec8f
ca91c2d
19338e6
ca91c2d
43c4d6f
 
 
19338e6
 
2dea97c
19338e6
 
 
ca91c2d
9abec8f
 
 
ca91c2d
9abec8f
 
 
ca91c2d
 
cb93ca5
19338e6
 
ca91c2d
9abec8f
 
 
ca91c2d
 
19338e6
 
 
 
 
 
 
ca91c2d
cb93ca5
19338e6
ca91c2d
 
cb93ca5
ca91c2d
cb93ca5
 
 
 
19338e6
 
 
ca91c2d
cb93ca5
ca91c2d
 
 
 
831308c
cb93ca5
ca91c2d
f605ab6
cb93ca5
f605ab6
 
 
 
 
ca91c2d
f605ab6
19338e6
 
 
ca91c2d
19338e6
 
ca91c2d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import gradio as gr
import json
import time
import traceback
import io
import base64
from PIL import Image, ImageEnhance, ImageFilter

# --- Environment Configuration ---
GEMINI_KEY = os.environ.get("GEMINI_KEY", "")
DEFAULT_PORT = int(os.environ.get("PORT", 7860))
API_TIMEOUT = 120  # seconds

# --- Style Template Optimization ---
BASE_TEMPLATE = """Describe this design as a concise Flux 1.1 Pro prompt focusing on:
- Key visual elements
- Technical specifications
- Style consistency
- Functional requirements"""

STYLE_INSTRUCTIONS = {
    "General": BASE_TEMPLATE,
    "Realistic": f"{BASE_TEMPLATE}\nPHOTOREALISTIC RULES: Use photography terms, texture details, accurate lighting",
    "Kawaii": f"{BASE_TEMPLATE}\nKAWAII RULES: Rounded shapes, pastel colors, cute expressions",
    "Vector": f"{BASE_TEMPLATE}\nVECTOR RULES: Clean lines, geometric shapes, B&W gradients",
    "Silhouette": f"{BASE_TEMPLATE}\nSILHOUETTE RULES: High contrast, minimal details, strong outlines"
}

# --- Flux Configuration ---
FLUX_SPECS = {
    "aspect_ratios": ["1:1", "16:9", "4:3", "9:16"],
    "formats": ["SVG", "PNG", "PDF"],
    "color_modes": ["B&W", "CMYK", "RGB"],
    "dpi_options": [72, 150, 300, 600]
}

# --- Image Processing Pipeline ---
def preprocess_image(img):
    """Convert and enhance uploaded images"""
    try:
        if isinstance(img, str):  # Handle file paths
            img = Image.open(img)
        img = img.convert("RGB")
        img = ImageEnhance.Contrast(img).enhance(1.2)
        img = img.filter(ImageFilter.SHARPEN)
        return img
    except Exception as e:
        raise ValueError(f"Image processing error: {str(e)}")

# --- Core Generation Engine ---
def generate_prompt(image, api_key, style, creativity, neg_prompt, aspect, color_mode, dpi):
    try:
        if not image:
            return {"error": "โŒ Please upload an image"}

        api_key = api_key or GEMINI_KEY
        if not api_key:
            return {"error": "โŒ API key required - set GEMINI_KEY environment variable or use input field"}

        # Lazy import for Gemini
        try:
            import google.generativeai as genai
            genai.configure(api_key=api_key)
            model = genai.GenerativeModel("gemini-1.5-pro")
        except ImportError:
            return {"error": "โŒ Install Gemini SDK: pip install google-generativeai"}
        except Exception as e:
            if "authentication" in str(e).lower():
                return {"error": "โŒ Invalid API key or authentication error"}
            return {"error": f"โŒ API initialization error: {str(e)}"}

        # Image processing
        img = preprocess_image(image)
        img_bytes = io.BytesIO()
        img.save(img_bytes, format="PNG")
        img_b64 = base64.b64encode(img_bytes.getvalue()).decode()

        # Prompt instruction
        instruction = f"{STYLE_INSTRUCTIONS[style]}\nAVOID: {neg_prompt}\n"
        instruction += f"ASPECT: {aspect}, COLORS: {color_mode}, DPI: {dpi}\n"

        # Gemini generation
        try:
            response = model.generate_content(
                contents=[instruction, {"mime_type": "image/png", "data": img_b64}],
                generation_config={"temperature": creativity}
            )
            raw_prompt = response.text
        except Exception as e:
            return {"error": f"โŒ Prompt generation failed: {str(e)}"}

        # Basic validation
        validation = {"score": 8, "issues": [], "suggestions": []}
        input_tokens = len(img_b64) // 4  # Approximate
        output_tokens = len(raw_prompt.split())

        return raw_prompt, validation, {
            "input": input_tokens,
            "output": output_tokens
        }

    except Exception as e:
        traceback.print_exc()
        return {"error": str(e)}

# --- Response Formatter ---
def format_generation_response(result):
    """Format the response from generate_prompt for the UI"""
    if "error" in result:
        return result["error"], {}, {}
    else:
        return result.get("prompt", ""), result.get("validation", {}), result.get("stats", {})

def update_status(result):
    return "โœ… Prompt generated successfully!" if "prompt" in result else result.get("error", "โŒ Unknown error")

# --- Main Interface ---
def build_interface():
    with gr.Blocks(title="Flux Pro Generator") as app:
        # Header
        gr.Markdown("# ๐ŸŽจ Flux Pro Prompt Generator")
        gr.Markdown("Generate optimized design prompts from images using Google's Gemini")

        # API Key
        api_key = gr.Textbox(
            label="๐Ÿ”‘ Gemini API Key",
            value=GEMINI_KEY,
            type="password",
            info="Set GEMINI_KEY environment variable for production"
        )

        # Inputs
        with gr.Row():
            with gr.Column(scale=1):
                img_input = gr.Image(label="๐Ÿ–ผ๏ธ Upload Design", type="pil", sources=["upload"], interactive=True)
                style = gr.Dropdown(list(STYLE_INSTRUCTIONS.keys()), value="General", label="๐ŸŽจ Target Style")
                with gr.Accordion("โš™๏ธ Advanced Settings", open=False):
                    creativity = gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Creativity Level")
                    neg_prompt = gr.Textbox(label="๐Ÿšซ Negative Prompts", placeholder="What to avoid")
                    aspect = gr.Dropdown(FLUX_SPECS["aspect_ratios"], value="1:1", label="Aspect Ratio")
                    color_mode = gr.Dropdown(FLUX_SPECS["color_modes"], value="RGB", label="Color Mode")
                    dpi = gr.Dropdown([str(d) for d in FLUX_SPECS["dpi_options"]], value="300", label="Output DPI")
                gen_btn = gr.Button("โœจ Generate Prompt", variant="primary")

            with gr.Column(scale=2):
                prompt_output = gr.Textbox(label="๐Ÿ“ Optimized Prompt", lines=8, interactive=True, show_copy_button=True)
                status_msg = gr.Textbox(label="Status", visible=True)
                quality_report = gr.JSON(label="๐Ÿ” Quality Report", visible=True)
                token_stats = gr.JSON(label="๐Ÿงฎ Token Usage", visible=True)

        # Event bindings
        gen_btn.click(
            fn=generate_prompt,
            inputs=[img_input, api_key, style, creativity, neg_prompt, aspect, color_mode, dpi],
            outputs=None
        ).then(
            fn=format_generation_response,
            inputs=None,
            outputs=[prompt_output, quality_report, token_stats]
        ).then(
            fn=update_status,
            inputs=[prompt_output],
            outputs=[status_msg]
        )
    return app

# --- Launch App ---
if __name__ == "__main__":
    app = build_interface()
    app.launch(server_port=DEFAULT_PORT)