Spaces:
Sleeping
Sleeping
File size: 6,743 Bytes
b511d75 8d1bd48 19338e6 83a7945 19338e6 9abec8f 19338e6 cce6f28 19338e6 8d1bd48 83a7945 19338e6 83a7945 b511d75 19338e6 2dea97c 19338e6 ca91c2d 19338e6 ca91c2d 19338e6 ca91c2d 9abec8f cb93ca5 ca91c2d cb93ca5 ca91c2d 19338e6 ca91c2d 19338e6 ca91c2d 19338e6 ca91c2d 9abec8f cb93ca5 9abec8f 19338e6 9abec8f ca91c2d 9abec8f ca91c2d 9abec8f ca91c2d 19338e6 ca91c2d 43c4d6f 19338e6 2dea97c 19338e6 ca91c2d 9abec8f ca91c2d 9abec8f ca91c2d cb93ca5 19338e6 ca91c2d 9abec8f ca91c2d 19338e6 ca91c2d cb93ca5 19338e6 ca91c2d cb93ca5 ca91c2d cb93ca5 19338e6 ca91c2d cb93ca5 ca91c2d 831308c cb93ca5 ca91c2d f605ab6 cb93ca5 f605ab6 ca91c2d f605ab6 19338e6 ca91c2d 19338e6 ca91c2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
import gradio as gr
import json
import time
import traceback
import io
import base64
from PIL import Image, ImageEnhance, ImageFilter
# --- Environment Configuration ---
GEMINI_KEY = os.environ.get("GEMINI_KEY", "")
DEFAULT_PORT = int(os.environ.get("PORT", 7860))
API_TIMEOUT = 120 # seconds
# --- Style Template Optimization ---
BASE_TEMPLATE = """Describe this design as a concise Flux 1.1 Pro prompt focusing on:
- Key visual elements
- Technical specifications
- Style consistency
- Functional requirements"""
STYLE_INSTRUCTIONS = {
"General": BASE_TEMPLATE,
"Realistic": f"{BASE_TEMPLATE}\nPHOTOREALISTIC RULES: Use photography terms, texture details, accurate lighting",
"Kawaii": f"{BASE_TEMPLATE}\nKAWAII RULES: Rounded shapes, pastel colors, cute expressions",
"Vector": f"{BASE_TEMPLATE}\nVECTOR RULES: Clean lines, geometric shapes, B&W gradients",
"Silhouette": f"{BASE_TEMPLATE}\nSILHOUETTE RULES: High contrast, minimal details, strong outlines"
}
# --- Flux Configuration ---
FLUX_SPECS = {
"aspect_ratios": ["1:1", "16:9", "4:3", "9:16"],
"formats": ["SVG", "PNG", "PDF"],
"color_modes": ["B&W", "CMYK", "RGB"],
"dpi_options": [72, 150, 300, 600]
}
# --- Image Processing Pipeline ---
def preprocess_image(img):
"""Convert and enhance uploaded images"""
try:
if isinstance(img, str): # Handle file paths
img = Image.open(img)
img = img.convert("RGB")
img = ImageEnhance.Contrast(img).enhance(1.2)
img = img.filter(ImageFilter.SHARPEN)
return img
except Exception as e:
raise ValueError(f"Image processing error: {str(e)}")
# --- Core Generation Engine ---
def generate_prompt(image, api_key, style, creativity, neg_prompt, aspect, color_mode, dpi):
try:
if not image:
return {"error": "โ Please upload an image"}
api_key = api_key or GEMINI_KEY
if not api_key:
return {"error": "โ API key required - set GEMINI_KEY environment variable or use input field"}
# Lazy import for Gemini
try:
import google.generativeai as genai
genai.configure(api_key=api_key)
model = genai.GenerativeModel("gemini-1.5-pro")
except ImportError:
return {"error": "โ Install Gemini SDK: pip install google-generativeai"}
except Exception as e:
if "authentication" in str(e).lower():
return {"error": "โ Invalid API key or authentication error"}
return {"error": f"โ API initialization error: {str(e)}"}
# Image processing
img = preprocess_image(image)
img_bytes = io.BytesIO()
img.save(img_bytes, format="PNG")
img_b64 = base64.b64encode(img_bytes.getvalue()).decode()
# Prompt instruction
instruction = f"{STYLE_INSTRUCTIONS[style]}\nAVOID: {neg_prompt}\n"
instruction += f"ASPECT: {aspect}, COLORS: {color_mode}, DPI: {dpi}\n"
# Gemini generation
try:
response = model.generate_content(
contents=[instruction, {"mime_type": "image/png", "data": img_b64}],
generation_config={"temperature": creativity}
)
raw_prompt = response.text
except Exception as e:
return {"error": f"โ Prompt generation failed: {str(e)}"}
# Basic validation
validation = {"score": 8, "issues": [], "suggestions": []}
input_tokens = len(img_b64) // 4 # Approximate
output_tokens = len(raw_prompt.split())
return raw_prompt, validation, {
"input": input_tokens,
"output": output_tokens
}
except Exception as e:
traceback.print_exc()
return {"error": str(e)}
# --- Response Formatter ---
def format_generation_response(result):
"""Format the response from generate_prompt for the UI"""
if "error" in result:
return result["error"], {}, {}
else:
return result.get("prompt", ""), result.get("validation", {}), result.get("stats", {})
def update_status(result):
return "โ
Prompt generated successfully!" if "prompt" in result else result.get("error", "โ Unknown error")
# --- Main Interface ---
def build_interface():
with gr.Blocks(title="Flux Pro Generator") as app:
# Header
gr.Markdown("# ๐จ Flux Pro Prompt Generator")
gr.Markdown("Generate optimized design prompts from images using Google's Gemini")
# API Key
api_key = gr.Textbox(
label="๐ Gemini API Key",
value=GEMINI_KEY,
type="password",
info="Set GEMINI_KEY environment variable for production"
)
# Inputs
with gr.Row():
with gr.Column(scale=1):
img_input = gr.Image(label="๐ผ๏ธ Upload Design", type="pil", sources=["upload"], interactive=True)
style = gr.Dropdown(list(STYLE_INSTRUCTIONS.keys()), value="General", label="๐จ Target Style")
with gr.Accordion("โ๏ธ Advanced Settings", open=False):
creativity = gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Creativity Level")
neg_prompt = gr.Textbox(label="๐ซ Negative Prompts", placeholder="What to avoid")
aspect = gr.Dropdown(FLUX_SPECS["aspect_ratios"], value="1:1", label="Aspect Ratio")
color_mode = gr.Dropdown(FLUX_SPECS["color_modes"], value="RGB", label="Color Mode")
dpi = gr.Dropdown([str(d) for d in FLUX_SPECS["dpi_options"]], value="300", label="Output DPI")
gen_btn = gr.Button("โจ Generate Prompt", variant="primary")
with gr.Column(scale=2):
prompt_output = gr.Textbox(label="๐ Optimized Prompt", lines=8, interactive=True, show_copy_button=True)
status_msg = gr.Textbox(label="Status", visible=True)
quality_report = gr.JSON(label="๐ Quality Report", visible=True)
token_stats = gr.JSON(label="๐งฎ Token Usage", visible=True)
# Event bindings
gen_btn.click(
fn=generate_prompt,
inputs=[img_input, api_key, style, creativity, neg_prompt, aspect, color_mode, dpi],
outputs=None
).then(
fn=format_generation_response,
inputs=None,
outputs=[prompt_output, quality_report, token_stats]
).then(
fn=update_status,
inputs=[prompt_output],
outputs=[status_msg]
)
return app
# --- Launch App ---
if __name__ == "__main__":
app = build_interface()
app.launch(server_port=DEFAULT_PORT) |