Spaces:
Sleeping
Sleeping
File size: 7,047 Bytes
b511d75 8d1bd48 19338e6 83a7945 19338e6 83a7945 19338e6 b511d75 19338e6 8d1bd48 83a7945 19338e6 83a7945 b511d75 19338e6 2dea97c 19338e6 83a7945 19338e6 2dea97c 19338e6 2dea97c 19338e6 2dea97c 19338e6 2dea97c 19338e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import os
import gradio as gr
import google.generativeai as genai
from PIL import Image, ImageEnhance, ImageFilter
import io
import base64
import json
import time
import traceback
try:
import pyperclip
except ImportError:
pyperclip = None
# --- Environment Configuration ---
GEMINI_KEY = os.environ.get("GEMINI_KEY", "")
DEFAULT_PORT = int(os.environ.get("PORT", 7860))
# --- Style Template Optimization ---
BASE_TEMPLATE = """Describe this design as a concise Flux 1.1 Pro prompt focusing on:
- Key visual elements
- Technical specifications
- Style consistency
- Functional requirements"""
STYLE_INSTRUCTIONS = {
"General": BASE_TEMPLATE,
"Realistic": f"{BASE_TEMPLATE}\nPHOTOREALISTIC RULES: Use photography terms, texture details, accurate lighting",
"Kawaii": f"{BASE_TEMPLATE}\nKAWAII RULES: Rounded shapes, pastel colors, cute expressions",
"Vector": f"{BASE_TEMPLATE}\nVECTOR RULES: Clean lines, geometric shapes, B&W gradients",
"Silhouette": f"{BASE_TEMPLATE}\nSILHOUETTE RULES: High contrast, minimal details, strong outlines"
}
# --- Flux Configuration ---
FLUX_SPECS = {
"aspect_ratios": ["1:1", "16:9", "4:3", "9:16"],
"formats": ["SVG", "PNG", "PDF"],
"color_modes": ["B&W", "CMYK", "RGB"],
"dpi_options": [72, 150, 300, 600]
}
# --- Quality Control System ---
class QualityValidator:
VALIDATION_TEMPLATE = """Analyze this Flux prompt:
1. Score style adherence (1-5)
2. List technical issues
3. Suggest improvements
Respond ONLY as JSON: {"score": x/10, "issues": [], "suggestions": []}"""
@classmethod
def validate(cls, prompt, model):
try:
response = model.generate_content([cls.VALIDATION_TEMPLATE, prompt])
return json.loads(response.text)
except:
return {"score": 0, "issues": ["Validation failed"], "suggestions": []}
# --- Image Processing Pipeline ---
def preprocess_image(img):
"""Convert and enhance uploaded images"""
try:
if isinstance(img, str): # Handle file paths
img = Image.open(img)
img = img.convert("RGB")
img = ImageEnhance.Contrast(img).enhance(1.2)
img = img.filter(ImageFilter.SHARPEN)
return img
except Exception as e:
raise ValueError(f"Image processing error: {str(e)}")
# --- Core Generation Engine ---
def generate_prompt(image, api_key, style, creativity, neg_prompt, aspect, color_mode, dpi):
try:
# Validate inputs
if not image:
raise ValueError("Please upload an image")
api_key = api_key or GEMINI_KEY
if not api_key:
raise ValueError("API key required - set in env (GEMINI_KEY) or input field")
# Initialize model
genai.configure(api_key=api_key)
model = genai.GenerativeModel("gemini-1.5-pro")
# Process image
img = preprocess_image(image)
img_bytes = io.BytesIO()
img.save(img_bytes, format="PNG")
img_b64 = base64.b64encode(img_bytes.getvalue()).decode()
# Build instruction
instruction = f"{STYLE_INSTRUCTIONS[style]}\nAVOID: {neg_prompt}\n"
instruction += f"ASPECT: {aspect}, COLORS: {color_mode}, DPI: {dpi}\n"
# Generate prompt
response = model.generate_content(
contents=[instruction, {"mime_type": "image/png", "data": img_b64}],
generation_config={"temperature": creativity}
)
raw_prompt = response.text
# Quality validation
validation = QualityValidator.validate(raw_prompt, model)
if validation.get("score", 0) < 7:
response = model.generate_content(f"Improve this prompt: {raw_prompt}\nIssues: {validation['issues']}")
raw_prompt = response.text
# Token tracking
input_tokens = len(img_b64) // 4 # Approximate base64 token count
output_tokens = len(raw_prompt.split())
return {
"prompt": raw_prompt,
"validation": validation,
"stats": {"input": input_tokens, "output": output_tokens}
}
except Exception as e:
traceback.print_exc()
return {"error": str(e)}
# --- UI Components ---
def create_advanced_controls():
with gr.Accordion("โ๏ธ Advanced Settings", open=False):
with gr.Row():
creativity = gr.Slider(0.0, 1.0, 0.7, label="Creativity Level")
neg_prompt = gr.Textbox(label="๐ซ Negative Prompts", placeholder="What to avoid")
with gr.Row():
aspect = gr.Dropdown(FLUX_SPECS["aspect_ratios"], label="Aspect Ratio")
color_mode = gr.Dropdown(FLUX_SPECS["color_modes"], label="Color Mode")
dpi = gr.Dropdown(FLUX_SPECS["dpi_options"], label="Output DPI")
return [creativity, neg_prompt, aspect, color_mode, dpi]
# --- Main Interface ---
def build_interface():
with gr.Blocks(title="Flux Pro Generator", theme=gr.themes.Soft()) as app:
# Security Section
api_key = gr.Textbox(
label="๐ Gemini API Key",
value=GEMINI_KEY,
type="password",
info="Set GEMINI_KEY environment variable for production"
)
# Main Workflow
with gr.Row(variant="panel"):
with gr.Column(scale=1):
img_input = gr.Image(
label="๐ผ๏ธ Upload Design",
type="pil",
sources=["upload"],
interactive=True
)
style = gr.Dropdown(
list(STYLE_INSTRUCTIONS.keys()),
value="General",
label="๐จ Target Style"
)
adv_controls = create_advanced_controls()
gen_btn = gr.Button("โจ Generate Prompt", variant="primary")
with gr.Column(scale=2):
prompt_output = gr.Textbox(
label="๐ Optimized Prompt",
lines=8,
interactive=False
)
with gr.Row():
copy_btn = gr.Button("๐ Copy")
history_btn = gr.Button("๐ History")
quality_report = gr.JSON(
label="๐ Quality Report",
visible=True
)
token_stats = gr.JSON(
label="๐งฎ Token Usage",
visible=True
)
# History System
history = gr.State([])
# Event Handling
gen_btn.click(
lambda *args: generate_prompt(*args),
inputs=[img_input, api_key, style] + adv_controls,
outputs=[prompt_output, quality_report, token_stats]
)
copy_btn.click(
lambda x: pyperclip.copy(x) if pyperclip else None,
inputs=prompt_output,
outputs=None
)
return app
# --- Production Launch ---
if __name__ == "__main__":
app = build_interface()
app.launch() |