File size: 7,047 Bytes
b511d75
8d1bd48
 
19338e6
83a7945
19338e6
 
83a7945
19338e6
 
 
 
 
b511d75
19338e6
 
 
 
 
 
 
 
 
 
8d1bd48
83a7945
19338e6
 
 
 
 
 
 
 
 
 
 
 
 
83a7945
b511d75
19338e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dea97c
19338e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83a7945
19338e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dea97c
19338e6
 
2dea97c
19338e6
 
 
 
 
 
 
 
 
 
 
2dea97c
19338e6
 
 
 
 
 
2dea97c
19338e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import gradio as gr
import google.generativeai as genai
from PIL import Image, ImageEnhance, ImageFilter
import io
import base64
import json
import time
import traceback
try:
    import pyperclip
except ImportError:
    pyperclip = None

# --- Environment Configuration ---
GEMINI_KEY = os.environ.get("GEMINI_KEY", "")
DEFAULT_PORT = int(os.environ.get("PORT", 7860))

# --- Style Template Optimization ---
BASE_TEMPLATE = """Describe this design as a concise Flux 1.1 Pro prompt focusing on:
- Key visual elements
- Technical specifications
- Style consistency
- Functional requirements"""

STYLE_INSTRUCTIONS = {
    "General": BASE_TEMPLATE,
    "Realistic": f"{BASE_TEMPLATE}\nPHOTOREALISTIC RULES: Use photography terms, texture details, accurate lighting",
    "Kawaii": f"{BASE_TEMPLATE}\nKAWAII RULES: Rounded shapes, pastel colors, cute expressions",
    "Vector": f"{BASE_TEMPLATE}\nVECTOR RULES: Clean lines, geometric shapes, B&W gradients",
    "Silhouette": f"{BASE_TEMPLATE}\nSILHOUETTE RULES: High contrast, minimal details, strong outlines"
}

# --- Flux Configuration ---
FLUX_SPECS = {
    "aspect_ratios": ["1:1", "16:9", "4:3", "9:16"],
    "formats": ["SVG", "PNG", "PDF"],
    "color_modes": ["B&W", "CMYK", "RGB"],
    "dpi_options": [72, 150, 300, 600]
}

# --- Quality Control System ---
class QualityValidator:
    VALIDATION_TEMPLATE = """Analyze this Flux prompt:
1. Score style adherence (1-5)
2. List technical issues
3. Suggest improvements
Respond ONLY as JSON: {"score": x/10, "issues": [], "suggestions": []}"""

    @classmethod
    def validate(cls, prompt, model):
        try:
            response = model.generate_content([cls.VALIDATION_TEMPLATE, prompt])
            return json.loads(response.text)
        except:
            return {"score": 0, "issues": ["Validation failed"], "suggestions": []}

# --- Image Processing Pipeline ---
def preprocess_image(img):
    """Convert and enhance uploaded images"""
    try:
        if isinstance(img, str):  # Handle file paths
            img = Image.open(img)
        img = img.convert("RGB")
        img = ImageEnhance.Contrast(img).enhance(1.2)
        img = img.filter(ImageFilter.SHARPEN)
        return img
    except Exception as e:
        raise ValueError(f"Image processing error: {str(e)}")

# --- Core Generation Engine ---
def generate_prompt(image, api_key, style, creativity, neg_prompt, aspect, color_mode, dpi):
    try:
        # Validate inputs
        if not image:
            raise ValueError("Please upload an image")
            
        api_key = api_key or GEMINI_KEY
        if not api_key:
            raise ValueError("API key required - set in env (GEMINI_KEY) or input field")

        # Initialize model
        genai.configure(api_key=api_key)
        model = genai.GenerativeModel("gemini-1.5-pro")

        # Process image
        img = preprocess_image(image)
        img_bytes = io.BytesIO()
        img.save(img_bytes, format="PNG")
        img_b64 = base64.b64encode(img_bytes.getvalue()).decode()

        # Build instruction
        instruction = f"{STYLE_INSTRUCTIONS[style]}\nAVOID: {neg_prompt}\n"
        instruction += f"ASPECT: {aspect}, COLORS: {color_mode}, DPI: {dpi}\n"

        # Generate prompt
        response = model.generate_content(
            contents=[instruction, {"mime_type": "image/png", "data": img_b64}],
            generation_config={"temperature": creativity}
        )
        raw_prompt = response.text

        # Quality validation
        validation = QualityValidator.validate(raw_prompt, model)
        if validation.get("score", 0) < 7:
            response = model.generate_content(f"Improve this prompt: {raw_prompt}\nIssues: {validation['issues']}")
            raw_prompt = response.text

        # Token tracking
        input_tokens = len(img_b64) // 4  # Approximate base64 token count
        output_tokens = len(raw_prompt.split())
        
        return {
            "prompt": raw_prompt,
            "validation": validation,
            "stats": {"input": input_tokens, "output": output_tokens}
        }

    except Exception as e:
        traceback.print_exc()
        return {"error": str(e)}

# --- UI Components ---
def create_advanced_controls():
    with gr.Accordion("โš™๏ธ Advanced Settings", open=False):
        with gr.Row():
            creativity = gr.Slider(0.0, 1.0, 0.7, label="Creativity Level")
            neg_prompt = gr.Textbox(label="๐Ÿšซ Negative Prompts", placeholder="What to avoid")
        with gr.Row():
            aspect = gr.Dropdown(FLUX_SPECS["aspect_ratios"], label="Aspect Ratio")
            color_mode = gr.Dropdown(FLUX_SPECS["color_modes"], label="Color Mode")
            dpi = gr.Dropdown(FLUX_SPECS["dpi_options"], label="Output DPI")
    return [creativity, neg_prompt, aspect, color_mode, dpi]

# --- Main Interface ---
def build_interface():
    with gr.Blocks(title="Flux Pro Generator", theme=gr.themes.Soft()) as app:
        # Security Section
        api_key = gr.Textbox(
            label="๐Ÿ”‘ Gemini API Key",
            value=GEMINI_KEY,
            type="password",
            info="Set GEMINI_KEY environment variable for production"
        )

        # Main Workflow
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                img_input = gr.Image(
                    label="๐Ÿ–ผ๏ธ Upload Design",
                    type="pil",
                    sources=["upload"],
                    interactive=True
                )
                style = gr.Dropdown(
                    list(STYLE_INSTRUCTIONS.keys()),
                    value="General",
                    label="๐ŸŽจ Target Style"
                )
                adv_controls = create_advanced_controls()
                gen_btn = gr.Button("โœจ Generate Prompt", variant="primary")

            with gr.Column(scale=2):
                prompt_output = gr.Textbox(
                    label="๐Ÿ“ Optimized Prompt",
                    lines=8,
                    interactive=False
                )
                with gr.Row():
                    copy_btn = gr.Button("๐Ÿ“‹ Copy")
                    history_btn = gr.Button("๐Ÿ•’ History")
                quality_report = gr.JSON(
                    label="๐Ÿ” Quality Report",
                    visible=True
                )
                token_stats = gr.JSON(
                    label="๐Ÿงฎ Token Usage",
                    visible=True
                )

        # History System
        history = gr.State([])

        # Event Handling
        gen_btn.click(
            lambda *args: generate_prompt(*args),
            inputs=[img_input, api_key, style] + adv_controls,
            outputs=[prompt_output, quality_report, token_stats]
        )

        copy_btn.click(
            lambda x: pyperclip.copy(x) if pyperclip else None,
            inputs=prompt_output,
            outputs=None
        )

    return app

# --- Production Launch ---
if __name__ == "__main__":
    app = build_interface()
    app.launch()