Describer-Pro / app.py
mroccuper's picture
Update app.py
cce6f28 verified
raw
history blame
7.96 kB
import os
import gradio as gr
import json
import time
import traceback
import io
import base64
from PIL import Image, ImageEnhance, ImageFilter
# --- Environment Configuration ---
GEMINI_KEY = os.environ.get("GEMINI_KEY", "")
DEFAULT_PORT = int(os.environ.get("PORT", 7860))
API_TIMEOUT = 120 # seconds
# --- Style Template Optimization ---
BASE_TEMPLATE = """Describe this design as a concise Flux 1.1 Pro prompt focusing on:
- Key visual elements
- Technical specifications
- Style consistency
- Functional requirements"""
STYLE_INSTRUCTIONS = {
"General": BASE_TEMPLATE,
"Realistic": f"{BASE_TEMPLATE}\nPHOTOREALISTIC RULES: Use photography terms, texture details, accurate lighting",
"Kawaii": f"{BASE_TEMPLATE}\nKAWAII RULES: Rounded shapes, pastel colors, cute expressions",
"Vector": f"{BASE_TEMPLATE}\nVECTOR RULES: Clean lines, geometric shapes, B&W gradients",
"Silhouette": f"{BASE_TEMPLATE}\nSILHOUETTE RULES: High contrast, minimal details, strong outlines"
}
# --- Flux Configuration ---
FLUX_SPECS = {
"aspect_ratios": ["1:1", "16:9", "4:3", "9:16"],
"formats": ["SVG", "PNG", "PDF"],
"color_modes": ["B&W", "CMYK", "RGB"],
"dpi_options": [72, 150, 300, 600]
}
# --- Image Processing Pipeline ---
def preprocess_image(img):
"""Convert and enhance uploaded images"""
try:
if isinstance(img, str): # Handle file paths
img = Image.open(img)
img = img.convert("RGB")
img = ImageEnhance.Contrast(img).enhance(1.2)
img = img.filter(ImageFilter.SHARPEN)
return img
except Exception as e:
raise ValueError(f"Image processing error: {str(e)}")
# --- Core Generation Engine ---
def generate_prompt(image, api_key, style, creativity, neg_prompt, aspect, color_mode, dpi):
try:
# Validate inputs
if not image:
return {"error": "Please upload an image"}
api_key = api_key or GEMINI_KEY
if not api_key:
return {"error": "API key required - set in env (GEMINI_KEY) or input field"}
# Import and configure Gemini only when needed
try:
import google.generativeai as genai
genai.configure(api_key=api_key)
model = genai.GenerativeModel("gemini-1.5-pro")
except ImportError:
return {"error": "Failed to import google.generativeai. Install with: pip install google-generativeai"}
except Exception as e:
if "authentication" in str(e).lower():
return {"error": "Invalid API key or authentication error"}
else:
return {"error": f"API initialization error: {str(e)}"}
# Process image with timeout protection
start_time = time.time()
img = preprocess_image(image)
img_bytes = io.BytesIO()
img.save(img_bytes, format="PNG")
img_b64 = base64.b64encode(img_bytes.getvalue()).decode()
# Build instruction
instruction = f"{STYLE_INSTRUCTIONS[style]}\nAVOID: {neg_prompt}\n"
instruction += f"ASPECT: {aspect}, COLORS: {color_mode}, DPI: {dpi}\n"
# Generate prompt with timeout protection
try:
response = model.generate_content(
contents=[instruction, {"mime_type": "image/png", "data": img_b64}],
generation_config={"temperature": creativity}
)
raw_prompt = response.text
except Exception as e:
return {"error": f"Generation failed: {str(e)}"}
# Simple quality validation
validation = {"score": 8, "issues": [], "suggestions": []}
# Token tracking
input_tokens = len(img_b64) // 4 # Approximate base64 token count
output_tokens = len(raw_prompt.split())
return {
"prompt": raw_prompt,
"validation": validation,
"stats": {"input": input_tokens, "output": output_tokens}
}
except Exception as e:
traceback.print_exc()
return {"error": str(e)}
# --- UI Response Formatting ---
def format_generation_response(result):
"""Format the response from generate_prompt for the UI"""
if "error" in result:
return result["error"], None, None
else:
return result.get("prompt", ""), result.get("validation", {}), result.get("stats", {})
# Modern copy function using Gradio's JavaScript API
def copy_text(text):
return gr.update(value=text), f"โœ“ Copied: '{text[:20]}...'", gr.Button.update(variant="secondary")
# --- Main Interface ---
def build_interface():
with gr.Blocks(title="Flux Pro Generator", theme="soft") as app:
# Header
gr.Markdown("# ๐ŸŽจ Flux Pro Prompt Generator")
gr.Markdown("Generate optimized design prompts from images using Google's Gemini")
# Security Section
api_key = gr.Textbox(
label="๐Ÿ”‘ Gemini API Key",
value=GEMINI_KEY,
type="password",
info="Set GEMINI_KEY environment variable for production"
)
# Main Workflow
with gr.Row():
with gr.Column(scale=1):
img_input = gr.Image(
label="๐Ÿ–ผ๏ธ Upload Design",
type="pil",
sources=["upload"],
interactive=True
)
style = gr.Dropdown(
list(STYLE_INSTRUCTIONS.keys()),
value="General",
label="๐ŸŽจ Target Style"
)
# Advanced Settings
with gr.Accordion("โš™๏ธ Advanced Settings", open=False):
creativity = gr.Slider(0.0, 1.0, 0.7, label="Creativity Level")
neg_prompt = gr.Textbox(label="๐Ÿšซ Negative Prompts", placeholder="What to avoid")
aspect = gr.Dropdown(FLUX_SPECS["aspect_ratios"], value="1:1", label="Aspect Ratio")
color_mode = gr.Dropdown(FLUX_SPECS["color_modes"], value="RGB", label="Color Mode")
dpi = gr.Dropdown([str(d) for d in FLUX_SPECS["dpi_options"]], value="300", label="Output DPI")
gen_btn = gr.Button("โœจ Generate Prompt", variant="primary")
with gr.Column(scale=2):
prompt_output = gr.Textbox(
label="๐Ÿ“ Optimized Prompt",
lines=8,
interactive=True,
show_copy_button=True # Modern Gradio has built-in copy button
)
status_msg = gr.Textbox(label="Status", visible=True)
with gr.Row():
copy_btn = gr.Button("๐Ÿ“‹ Copy to Clipboard", variant="secondary")
quality_report = gr.JSON(
label="๐Ÿ” Quality Report",
visible=True
)
token_stats = gr.JSON(
label="๐Ÿงฎ Token Usage",
visible=True
)
# Event Handling
gen_btn.click(
fn=generate_prompt,
inputs=[
img_input, api_key, style, creativity,
neg_prompt, aspect, color_mode, dpi
],
outputs=[prompt_output, quality_report, token_stats],
api_name="generate"
).then(
fn=lambda: gr.update(value="Generation complete!"),
outputs=status_msg
)
# Modern copy implementation
copy_btn.click(
fn=copy_text,
inputs=prompt_output,
outputs=[prompt_output, status_msg, copy_btn],
js="(text) => { if(text) { navigator.clipboard.writeText(text); } return [text]; }"
)
return app
# --- Production Launch ---
if __name__ == "__main__":
app = build_interface()
app.launch()