Spaces:
Runtime error
Runtime error
mrolando
commited on
Commit
·
0592ce5
1
Parent(s):
74138e0
test
Browse files
app.py
CHANGED
|
@@ -19,22 +19,19 @@ pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype)
|
|
| 19 |
pipe = pipe.to(device)
|
| 20 |
# pipe.unet = torch.compile(pipe.unet)
|
| 21 |
#pipe.unet = torch.compile(pipe.unet)
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
import base64
|
| 26 |
|
| 27 |
with open("Iso_Logotipo_Ceibal.png", "rb") as image_file:
|
| 28 |
encoded_image = base64.b64encode(image_file.read()).decode()
|
| 29 |
|
| 30 |
-
CKPT = "facebook/nllb-200-distilled-600M"
|
| 31 |
|
| 32 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(CKPT)
|
| 33 |
-
tokenizer = AutoTokenizer.from_pretrained(CKPT)
|
| 34 |
def generate_sound(text,steps,audio_length,negative_prompt):
|
| 35 |
print(text)
|
| 36 |
-
text=translate_text(text)
|
| 37 |
-
negative_prompt = translate_text(negative_prompt)
|
| 38 |
print(text)
|
| 39 |
waveforms = pipe(text,
|
| 40 |
num_inference_steps=steps,
|
|
@@ -43,17 +40,17 @@ def generate_sound(text,steps,audio_length,negative_prompt):
|
|
| 43 |
rate =16000
|
| 44 |
return rate, waveforms[0]
|
| 45 |
|
| 46 |
-
def translate_text(text):
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
# def translate_text(text):
|
| 58 |
# text = es_en_translator(text)[0].get("translation_text")
|
| 59 |
# return text
|
|
|
|
| 19 |
pipe = pipe.to(device)
|
| 20 |
# pipe.unet = torch.compile(pipe.unet)
|
| 21 |
#pipe.unet = torch.compile(pipe.unet)
|
|
|
|
|
|
|
|
|
|
| 22 |
import base64
|
| 23 |
|
| 24 |
with open("Iso_Logotipo_Ceibal.png", "rb") as image_file:
|
| 25 |
encoded_image = base64.b64encode(image_file.read()).decode()
|
| 26 |
|
| 27 |
+
# CKPT = "facebook/nllb-200-distilled-600M"
|
| 28 |
|
| 29 |
+
# model = AutoModelForSeq2SeqLM.from_pretrained(CKPT)
|
| 30 |
+
# tokenizer = AutoTokenizer.from_pretrained(CKPT)
|
| 31 |
def generate_sound(text,steps,audio_length,negative_prompt):
|
| 32 |
print(text)
|
| 33 |
+
# text=translate_text(text)
|
| 34 |
+
# negative_prompt = translate_text(negative_prompt)
|
| 35 |
print(text)
|
| 36 |
waveforms = pipe(text,
|
| 37 |
num_inference_steps=steps,
|
|
|
|
| 40 |
rate =16000
|
| 41 |
return rate, waveforms[0]
|
| 42 |
|
| 43 |
+
# def translate_text(text):
|
| 44 |
+
# translation_pipeline = pipeline("translation",
|
| 45 |
+
# model=model,
|
| 46 |
+
# tokenizer=tokenizer,
|
| 47 |
+
# src_lang="spa_Latn",
|
| 48 |
+
# tgt_lang="eng_Latn",
|
| 49 |
+
# max_length=400,
|
| 50 |
+
# device=device)
|
| 51 |
|
| 52 |
+
# result = translation_pipeline(text)
|
| 53 |
+
# return result[0]['translation_text']
|
| 54 |
# def translate_text(text):
|
| 55 |
# text = es_en_translator(text)[0].get("translation_text")
|
| 56 |
# return text
|