File size: 11,175 Bytes
8e4018d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import gradio as gr
import datetime
from typing import Dict, List, Any, Union, Optional
import random
import os
import json
import numpy as np
from pathlib import Path

# Import utilities
from utils.storage import load_data, save_data
from utils.state import generate_id, get_timestamp, record_activity
from utils.ai_models import (
    generate_text, answer_question, analyze_image, transcribe_speech,
    translate_text, analyze_sentiment, summarize_text, generate_code
)
from utils.config import AI_MODELS, DATA_DIR
from utils.logging import get_logger
from utils.error_handling import handle_ai_model_exceptions, AIModelError

# Initialize logger
logger = get_logger(__name__)

# Define AI assistant types and their descriptions
AI_ASSISTANT_TYPES = {
    "General Chat": {
        "description": "Have natural conversations on any topic",
        "icon": "πŸ’¬",
        "model": "microsoft/DialoGPT-medium",
        "task": "text_generation",
        "placeholder": "Chat with me about anything...",
        "examples": [
            "Tell me about the benefits of meditation",
            "What are some good productivity habits?",
            "Can you recommend some books on personal growth?"
        ]
    },
    "Task Assistant": {
        "description": "Get help with planning and organizing tasks",
        "icon": "πŸ“‹",
        "model": "microsoft/DialoGPT-medium",
        "task": "text_generation",
        "placeholder": "Ask for help with your tasks and planning...",
        "examples": [
            "Help me break down this project into smaller tasks",
            "How can I prioritize my workload better?",
            "Create a schedule for my day"
        ]
    },
    "Writing Helper": {
        "description": "Assistance with writing and content creation",
        "icon": "✍️",
        "model": "microsoft/DialoGPT-medium",
        "task": "text_generation",
        "placeholder": "What would you like help writing?",
        "examples": [
            "Help me draft an email to my team about the project delay",
            "Give me ideas for a blog post about productivity",
            "Improve this paragraph: [your text here]"
        ]
    },
    "Code Assistant": {
        "description": "Get help with programming and coding",
        "icon": "πŸ’»",
        "model": "microsoft/CodeBERT-base",
        "task": "code_generation",
        "placeholder": "Describe what code you need help with...",
        "examples": [
            "Write a Python function to sort a list of dictionaries by a specific key",
            "How do I create a responsive navbar with CSS?",
            "Debug this code: [your code here]"
        ]
    },
    "Research Agent": {
        "description": "Help with gathering and organizing information",
        "icon": "πŸ”Ž",
        "model": "distilbert-base-uncased-distilled-squad",
        "task": "question_answering",
        "placeholder": "What topic would you like to research?",
        "examples": [
            "Summarize the key points about climate change",
            "What are the main theories of motivation?",
            "Compare different project management methodologies"
        ]
    },
    "Learning Tutor": {
        "description": "Educational support and explanations",
        "icon": "πŸŽ“",
        "model": "microsoft/DialoGPT-medium",
        "task": "text_generation",
        "placeholder": "What would you like to learn about?",
        "examples": [
            "Explain quantum computing in simple terms",
            "Help me understand the concept of compound interest",
            "What are the key events of World War II?"
        ]
    },
    "Wellness Coach": {
        "description": "Guidance on health, fitness, and wellbeing",
        "icon": "🧘",
        "model": "microsoft/DialoGPT-medium",
        "task": "text_generation",
        "placeholder": "Ask about health, fitness, or wellbeing...",
        "examples": [
            "What are some good exercises for stress relief?",
            "Give me a simple meditation routine for beginners",
            "How can I improve my sleep quality?"
        ]
    }
}

@handle_ai_model_exceptions
def create_ai_assistant_page(state: Dict[str, Any]) -> None:
    """
    Create the AI Assistant Hub page with various AI assistants
    
    Args:
        state: Application state
    """
    logger.info("Creating AI Assistant Hub page")
    
    # Create the AI Assistant Hub layout
    with gr.Column(elem_id="ai-assistant-page"):
        gr.Markdown("# πŸ€– AI Assistant Hub")
        
        # Assistant selector
        with gr.Row():
            assistant_selector = gr.Radio(
                choices=list(AI_ASSISTANT_TYPES.keys()),
                value=list(AI_ASSISTANT_TYPES.keys())[0],
                label="Select Assistant",
                elem_id="assistant-selector"
            )
        
        # Assistant description
        assistant_description = gr.Markdown(
            f"### {AI_ASSISTANT_TYPES[list(AI_ASSISTANT_TYPES.keys())[0]]['icon']} {list(AI_ASSISTANT_TYPES.keys())[0]}"
            f"\n{AI_ASSISTANT_TYPES[list(AI_ASSISTANT_TYPES.keys())[0]]['description']}"
        )
        
        # Chat interface
        with gr.Group(elem_id="chat-interface"):
            # Chat history
            chat_history = gr.Chatbot(
                elem_id="chat-history",
                height=400
            )
            
            # Input and send button
            with gr.Row():
                with gr.Column(scale=4):
                    chat_input = gr.Textbox(
                        placeholder=AI_ASSISTANT_TYPES[list(AI_ASSISTANT_TYPES.keys())[0]]['placeholder'],
                        label="",
                        elem_id="chat-input"
                    )
                with gr.Column(scale=1):
                    send_btn = gr.Button("Send", elem_id="send-btn")
            
            # Example queries
            with gr.Group(elem_id="example-queries"):
                gr.Markdown("### Example Queries")
                example_btns = []
                for example in AI_ASSISTANT_TYPES[list(AI_ASSISTANT_TYPES.keys())[0]]['examples']:
                    example_btns.append(gr.Button(example))
        
        # Function to update assistant description
        @handle_ai_model_exceptions
        def update_assistant_description(assistant_name):
            """
            Update the assistant description based on selection
            
            Args:
                assistant_name: Name of the selected assistant
                
            Returns:
                Updated description markdown
            """
            logger.debug(f"Updating assistant description for: {assistant_name}")
            assistant_info = AI_ASSISTANT_TYPES[assistant_name]
            
            # Update chat input placeholder
            chat_input.placeholder = assistant_info['placeholder']
            
            # Update example queries
            for i, example_btn in enumerate(example_btns):
                if i < len(assistant_info['examples']):
                    example_btn.value = assistant_info['examples'][i]
            
            return f"### {assistant_info['icon']} {assistant_name}\n{assistant_info['description']}"
        
        # Connect assistant selector to description update
        assistant_selector.change(
            update_assistant_description,
            inputs=[assistant_selector],
            outputs=[assistant_description]
        )
        
        # Function to handle chat messages
        @handle_ai_model_exceptions
        def chat_with_assistant(message, history, assistant_name):
            """
            Process chat messages and generate responses
            
            Args:
                message: User message
                history: Chat history
                assistant_name: Name of the selected assistant
                
            Returns:
                Updated chat history
            """
            if not message.strip():
                return history
            
            logger.info(f"Processing message for {assistant_name}: {message[:30]}...")
            
            # Get assistant info
            assistant_info = AI_ASSISTANT_TYPES[assistant_name]
            task = assistant_info['task']
            
            try:
                # Generate response based on assistant type
                if task == "text_generation":
                    # Prepare context from history
                    context = "\n".join([f"User: {h[0]}\nAssistant: {h[1]}" for h in history[-3:]])
                    context += f"\nUser: {message}\nAssistant:"
                    
                    response = generate_text(context)
                    
                elif task == "question_answering":
                    # For QA, we need a context, so we'll use the history as context
                    context = "\n".join([f"Q: {h[0]}\nA: {h[1]}" for h in history[-3:]])
                    response = answer_question(message, context)
                    
                elif task == "code_generation":
                    # For code generation, we'll use a specialized prompt
                    prompt = f"Generate code for: {message}"
                    response = generate_code(prompt)
                    
                else:
                    # Default to text generation
                    response = generate_text(message)
                
                # Record activity
                record_activity({
                    "type": "ai_assistant_used",
                    "assistant": assistant_name,
                    "message": message[:50] + ("..." if len(message) > 50 else ""),
                    "timestamp": datetime.datetime.now().isoformat()
                })
                
                # Update history
                history.append((message, response))
                return history
                
            except AIModelError as e:
                logger.error(f"AI model error: {str(e)}")
                return history + [(message, f"I'm sorry, I encountered an error: {e.message}")]
            except Exception as e:
                logger.error(f"Unexpected error in chat: {str(e)}")
                return history + [(message, "I'm sorry, I encountered an unexpected error. Please try again.")]
        
        # Connect send button to chat function
        send_btn.click(
            chat_with_assistant,
            inputs=[chat_input, chat_history, assistant_selector],
            outputs=[chat_history],
            clear_button=chat_input
        )
        
        # Connect chat input to chat function (for Enter key)
        chat_input.submit(
            chat_with_assistant,
            inputs=[chat_input, chat_history, assistant_selector],
            outputs=[chat_history],
            clear_button=chat_input
        )
        
        # Connect example buttons to chat input
        for example_btn in example_btns:
            example_btn.click(
                lambda example: example,
                inputs=[example_btn],
                outputs=[chat_input]
            )