File size: 11,175 Bytes
8e4018d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import gradio as gr
import datetime
from typing import Dict, List, Any, Union, Optional
import random
import os
import json
import numpy as np
from pathlib import Path
# Import utilities
from utils.storage import load_data, save_data
from utils.state import generate_id, get_timestamp, record_activity
from utils.ai_models import (
generate_text, answer_question, analyze_image, transcribe_speech,
translate_text, analyze_sentiment, summarize_text, generate_code
)
from utils.config import AI_MODELS, DATA_DIR
from utils.logging import get_logger
from utils.error_handling import handle_ai_model_exceptions, AIModelError
# Initialize logger
logger = get_logger(__name__)
# Define AI assistant types and their descriptions
AI_ASSISTANT_TYPES = {
"General Chat": {
"description": "Have natural conversations on any topic",
"icon": "π¬",
"model": "microsoft/DialoGPT-medium",
"task": "text_generation",
"placeholder": "Chat with me about anything...",
"examples": [
"Tell me about the benefits of meditation",
"What are some good productivity habits?",
"Can you recommend some books on personal growth?"
]
},
"Task Assistant": {
"description": "Get help with planning and organizing tasks",
"icon": "π",
"model": "microsoft/DialoGPT-medium",
"task": "text_generation",
"placeholder": "Ask for help with your tasks and planning...",
"examples": [
"Help me break down this project into smaller tasks",
"How can I prioritize my workload better?",
"Create a schedule for my day"
]
},
"Writing Helper": {
"description": "Assistance with writing and content creation",
"icon": "βοΈ",
"model": "microsoft/DialoGPT-medium",
"task": "text_generation",
"placeholder": "What would you like help writing?",
"examples": [
"Help me draft an email to my team about the project delay",
"Give me ideas for a blog post about productivity",
"Improve this paragraph: [your text here]"
]
},
"Code Assistant": {
"description": "Get help with programming and coding",
"icon": "π»",
"model": "microsoft/CodeBERT-base",
"task": "code_generation",
"placeholder": "Describe what code you need help with...",
"examples": [
"Write a Python function to sort a list of dictionaries by a specific key",
"How do I create a responsive navbar with CSS?",
"Debug this code: [your code here]"
]
},
"Research Agent": {
"description": "Help with gathering and organizing information",
"icon": "π",
"model": "distilbert-base-uncased-distilled-squad",
"task": "question_answering",
"placeholder": "What topic would you like to research?",
"examples": [
"Summarize the key points about climate change",
"What are the main theories of motivation?",
"Compare different project management methodologies"
]
},
"Learning Tutor": {
"description": "Educational support and explanations",
"icon": "π",
"model": "microsoft/DialoGPT-medium",
"task": "text_generation",
"placeholder": "What would you like to learn about?",
"examples": [
"Explain quantum computing in simple terms",
"Help me understand the concept of compound interest",
"What are the key events of World War II?"
]
},
"Wellness Coach": {
"description": "Guidance on health, fitness, and wellbeing",
"icon": "π§",
"model": "microsoft/DialoGPT-medium",
"task": "text_generation",
"placeholder": "Ask about health, fitness, or wellbeing...",
"examples": [
"What are some good exercises for stress relief?",
"Give me a simple meditation routine for beginners",
"How can I improve my sleep quality?"
]
}
}
@handle_ai_model_exceptions
def create_ai_assistant_page(state: Dict[str, Any]) -> None:
"""
Create the AI Assistant Hub page with various AI assistants
Args:
state: Application state
"""
logger.info("Creating AI Assistant Hub page")
# Create the AI Assistant Hub layout
with gr.Column(elem_id="ai-assistant-page"):
gr.Markdown("# π€ AI Assistant Hub")
# Assistant selector
with gr.Row():
assistant_selector = gr.Radio(
choices=list(AI_ASSISTANT_TYPES.keys()),
value=list(AI_ASSISTANT_TYPES.keys())[0],
label="Select Assistant",
elem_id="assistant-selector"
)
# Assistant description
assistant_description = gr.Markdown(
f"### {AI_ASSISTANT_TYPES[list(AI_ASSISTANT_TYPES.keys())[0]]['icon']} {list(AI_ASSISTANT_TYPES.keys())[0]}"
f"\n{AI_ASSISTANT_TYPES[list(AI_ASSISTANT_TYPES.keys())[0]]['description']}"
)
# Chat interface
with gr.Group(elem_id="chat-interface"):
# Chat history
chat_history = gr.Chatbot(
elem_id="chat-history",
height=400
)
# Input and send button
with gr.Row():
with gr.Column(scale=4):
chat_input = gr.Textbox(
placeholder=AI_ASSISTANT_TYPES[list(AI_ASSISTANT_TYPES.keys())[0]]['placeholder'],
label="",
elem_id="chat-input"
)
with gr.Column(scale=1):
send_btn = gr.Button("Send", elem_id="send-btn")
# Example queries
with gr.Group(elem_id="example-queries"):
gr.Markdown("### Example Queries")
example_btns = []
for example in AI_ASSISTANT_TYPES[list(AI_ASSISTANT_TYPES.keys())[0]]['examples']:
example_btns.append(gr.Button(example))
# Function to update assistant description
@handle_ai_model_exceptions
def update_assistant_description(assistant_name):
"""
Update the assistant description based on selection
Args:
assistant_name: Name of the selected assistant
Returns:
Updated description markdown
"""
logger.debug(f"Updating assistant description for: {assistant_name}")
assistant_info = AI_ASSISTANT_TYPES[assistant_name]
# Update chat input placeholder
chat_input.placeholder = assistant_info['placeholder']
# Update example queries
for i, example_btn in enumerate(example_btns):
if i < len(assistant_info['examples']):
example_btn.value = assistant_info['examples'][i]
return f"### {assistant_info['icon']} {assistant_name}\n{assistant_info['description']}"
# Connect assistant selector to description update
assistant_selector.change(
update_assistant_description,
inputs=[assistant_selector],
outputs=[assistant_description]
)
# Function to handle chat messages
@handle_ai_model_exceptions
def chat_with_assistant(message, history, assistant_name):
"""
Process chat messages and generate responses
Args:
message: User message
history: Chat history
assistant_name: Name of the selected assistant
Returns:
Updated chat history
"""
if not message.strip():
return history
logger.info(f"Processing message for {assistant_name}: {message[:30]}...")
# Get assistant info
assistant_info = AI_ASSISTANT_TYPES[assistant_name]
task = assistant_info['task']
try:
# Generate response based on assistant type
if task == "text_generation":
# Prepare context from history
context = "\n".join([f"User: {h[0]}\nAssistant: {h[1]}" for h in history[-3:]])
context += f"\nUser: {message}\nAssistant:"
response = generate_text(context)
elif task == "question_answering":
# For QA, we need a context, so we'll use the history as context
context = "\n".join([f"Q: {h[0]}\nA: {h[1]}" for h in history[-3:]])
response = answer_question(message, context)
elif task == "code_generation":
# For code generation, we'll use a specialized prompt
prompt = f"Generate code for: {message}"
response = generate_code(prompt)
else:
# Default to text generation
response = generate_text(message)
# Record activity
record_activity({
"type": "ai_assistant_used",
"assistant": assistant_name,
"message": message[:50] + ("..." if len(message) > 50 else ""),
"timestamp": datetime.datetime.now().isoformat()
})
# Update history
history.append((message, response))
return history
except AIModelError as e:
logger.error(f"AI model error: {str(e)}")
return history + [(message, f"I'm sorry, I encountered an error: {e.message}")]
except Exception as e:
logger.error(f"Unexpected error in chat: {str(e)}")
return history + [(message, "I'm sorry, I encountered an unexpected error. Please try again.")]
# Connect send button to chat function
send_btn.click(
chat_with_assistant,
inputs=[chat_input, chat_history, assistant_selector],
outputs=[chat_history],
clear_button=chat_input
)
# Connect chat input to chat function (for Enter key)
chat_input.submit(
chat_with_assistant,
inputs=[chat_input, chat_history, assistant_selector],
outputs=[chat_history],
clear_button=chat_input
)
# Connect example buttons to chat input
for example_btn in example_btns:
example_btn.click(
lambda example: example,
inputs=[example_btn],
outputs=[chat_input]
) |