File size: 14,101 Bytes
8e4018d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import gradio as gr
import datetime
from typing import Dict, List, Any, Union, Optional
import random
import os
import json
import numpy as np
from pathlib import Path

# Import utilities
from utils.storage import load_data, save_data
from utils.state import generate_id, get_timestamp, record_activity
from utils.ai_models import (
    generate_text, answer_question, analyze_image, transcribe_speech,
    translate_text, analyze_sentiment, summarize_text, generate_code
)
from utils.config import AI_MODELS, DATA_DIR
from utils.logging import get_logger
from utils.error_handling import handle_ai_model_exceptions, AIModelError

# Initialize logger
logger = get_logger(__name__)

# Define AI assistant types and their descriptions
AI_ASSISTANT_TYPES = {
    "General Chat": {
        "description": "Have natural conversations on any topic",
        "icon": "πŸ’¬",
        "model": "microsoft/DialoGPT-medium",
        "task": "text_generation",
        "placeholder": "Chat with me about anything...",
        "examples": [
            "Tell me about the benefits of meditation",
            "What are some good productivity habits?",
            "Can you recommend some books on personal growth?"
        ]
    },
    "Task Assistant": {
        "description": "Get help with planning and organizing tasks",
        "icon": "πŸ“‹",
        "model": "microsoft/DialoGPT-medium",
        "task": "text_generation",
        "placeholder": "Ask for help with your tasks and planning...",
        "examples": [
            "Help me break down this project into smaller tasks",
            "How can I prioritize my workload better?",
            "Create a schedule for my day"
        ]
    },
    "Writing Helper": {
        "description": "Assistance with writing and content creation",
        "icon": "✍️",
        "model": "microsoft/DialoGPT-medium",
        "task": "text_generation",
        "placeholder": "What would you like help writing?",
        "examples": [
            "Help me draft an email to my team about the project delay",
            "Give me ideas for a blog post about productivity",
            "Improve this paragraph: [your text here]"
        ]
    },
    "Code Assistant": {
        "description": "Get help with programming and coding",
        "icon": "πŸ’»",
        "model": "microsoft/CodeBERT-base",
        "task": "code_generation",
        "placeholder": "Describe what code you need help with...",
        "examples": [
            "Write a Python function to sort a list of dictionaries by a specific key",
            "How do I create a responsive navbar with CSS?",
            "Debug this code: [your code here]"
        ]
    },
    "Research Agent": {
        "description": "Help with gathering and organizing information",
        "icon": "πŸ”Ž",
        "model": "distilbert-base-uncased-distilled-squad",
        "task": "question_answering",
        "placeholder": "What topic would you like to research?",
        "examples": [
            "Summarize the key points about climate change",
            "What are the main theories of motivation?",
            "Compare different project management methodologies"
        ]
    },
    "Learning Tutor": {
        "description": "Educational support and explanations",
        "icon": "πŸŽ“",
        "model": "microsoft/DialoGPT-medium",
        "task": "text_generation",
        "placeholder": "What would you like to learn about?",
        "examples": [
            "Explain quantum computing in simple terms",
            "Help me understand the concept of compound interest",
            "What are the key events of World War II?"
        ]
    },
    "Wellness Coach": {
        "description": "Guidance on health, fitness, and wellbeing",
        "icon": "🧘",
        "model": "microsoft/DialoGPT-medium",
        "task": "text_generation",
        "placeholder": "Ask for wellness and health advice...",
        "examples": [
            "Suggest a 10-minute desk workout",
            "What are some stress management techniques?",
            "Give me ideas for healthy meal prep"
        ]
    },
    "Creative Assistant": {
        "description": "Help with brainstorming and creative ideas",
        "icon": "πŸ’‘",
        "model": "microsoft/DialoGPT-medium",
        "task": "text_generation",
        "placeholder": "What creative ideas do you need?",
        "examples": [
            "Help me brainstorm names for my new project",
            "Give me ideas for a fantasy story setting",
            "Suggest creative ways to repurpose old items"
        ]
    }
}

def create_ai_hub_page(state: Dict[str, Any]) -> None:
    """
    Create the AI Assistant Hub page with access to various specialized AI assistants
    
    Args:
        state: Application state
    """
    # Initialize AI conversation history if not present
    if "ai_conversations" not in state:
        state["ai_conversations"] = {}
        for assistant_type in AI_ASSISTANT_TYPES:
            state["ai_conversations"][assistant_type] = []
    
    # Create the AI hub page layout
    with gr.Column(elem_id="ai-hub-page"):
        gr.Markdown("# πŸ€– AI Assistant Hub")
        gr.Markdown("*Access specialized AI assistants powered by free models to help with various tasks*")
        
        # Create tabs for different assistant types
        with gr.Tabs() as assistant_tabs:
            assistant_interfaces = {}
            assistant_chat_histories = {}
            assistant_inputs = {}
            assistant_send_btns = {}
            
            # Create a tab for each assistant type
            for assistant_type, assistant_info in AI_ASSISTANT_TYPES.items():
                with gr.TabItem(f"{assistant_info['icon']} {assistant_type}") as tab:
                    assistant_interfaces[assistant_type] = tab
                    
                    # Assistant description
                    gr.Markdown(f"## {assistant_info['icon']} {assistant_type}")
                    gr.Markdown(f"*{assistant_info['description']}*")
                    gr.Markdown(f"*Using model: {assistant_info['model']}*")
                    
                    # Chat interface
                    with gr.Column():
                        # Chat history display
                        assistant_chat_histories[assistant_type] = gr.Chatbot(
                            label="Conversation",
                            elem_id=f"{assistant_type.lower().replace(' ', '-')}-chat",
                            height=400,
                            show_copy_button=True
                        )
                        
                        # Example queries
                        with gr.Accordion("Example queries", open=False):
                            example_btns = []
                            for example in assistant_info["examples"]:
                                example_btn = gr.Button(example)
                                example_btns.append(example_btn)
                        
                        # Input area
                        with gr.Row():
                            assistant_inputs[assistant_type] = gr.Textbox(
                                placeholder=assistant_info["placeholder"],
                                label="Your message",
                                lines=3,
                                elem_id=f"{assistant_type.lower().replace(' ', '-')}-input"
                            )
                            assistant_send_btns[assistant_type] = gr.Button("Send", variant="primary")
                        
                        # Clear chat button
                        clear_btn = gr.Button("Clear Conversation")
                        
                        # Set up clear button functionality
                        def create_clear_handler(assistant_type):
                            def clear_history():
                                state["ai_conversations"][assistant_type] = []
                                return []
                            return clear_history
                        
                        clear_btn.click(
                            create_clear_handler(assistant_type),
                            inputs=[],
                            outputs=[assistant_chat_histories[assistant_type]]
                        )
                        
                        # Set up example buttons
                        for example_btn in example_btns:
                            example_btn.click(
                                lambda example=example_btn.value: example,
                                inputs=[],
                                outputs=[assistant_inputs[assistant_type]]
                            )
        
        # Function to handle sending messages to assistants
        def send_message(assistant_type, message):
            if not message.strip():
                return state["ai_conversations"].get(assistant_type, []), ""
            
            # Get assistant info
            assistant_info = AI_ASSISTANT_TYPES[assistant_type]
            task = assistant_info["task"]
            
            # Add user message to history
            history = state["ai_conversations"].get(assistant_type, [])
            history.append([message, None])
            
            # Generate response based on assistant type
            try:
                if task == "text_generation":
                    # For conversation-based assistants, include recent history in the prompt
                    context = "\n".join([f"User: {h[0]}\nAssistant: {h[1]}" for h in history[:-1][-3:] if h[1] is not None])
                    if context:
                        context += "\n"
                    
                    # Create a prompt with assistant type context
                    prompt = f"You are a helpful {assistant_type}.\n\n{context}User: {message}\nAssistant:"
                    response = generate_text(prompt, max_length=300)
                    
                elif task == "code_generation":
                    # For code assistant
                    response = generate_code(message)
                    
                elif task == "question_answering":
                    # For research agent, we need context
                    # In a real implementation, this would search for relevant context
                    # Here we'll use a simplified approach
                    context = "The user is asking for information. Provide a helpful response based on your knowledge."
                    response = answer_question(message, context)
                
                # Update the last message with the response
                history[-1][1] = response
                
                # Record activity
                record_activity({
                    "type": "ai_assistant_used",
                    "assistant": assistant_type,
                    "timestamp": get_timestamp()
                })
                
                # Save conversation history
                state["ai_conversations"][assistant_type] = history
                save_data(os.path.join(DATA_DIR, "ai_conversations.json"), state["ai_conversations"])
                
                return history, ""
                
            except Exception as e:
                logger.error(f"Error generating response: {str(e)}")
                error_message = "Sorry, I encountered an error while generating a response. Please try again."
                history[-1][1] = error_message
                return history, ""
        
        # Set up send button for each assistant
        for assistant_type, send_btn in assistant_send_btns.items():
            send_btn.click(
                lambda message, assistant_type=assistant_type: send_message(assistant_type, message),
                inputs=[assistant_inputs[assistant_type]],
                outputs=[assistant_chat_histories[assistant_type], assistant_inputs[assistant_type]]
            )
            
            # Also trigger on Enter key
            assistant_inputs[assistant_type].submit(
                lambda message, assistant_type=assistant_type: send_message(assistant_type, message),
                inputs=[assistant_inputs[assistant_type]],
                outputs=[assistant_chat_histories[assistant_type], assistant_inputs[assistant_type]]
            )
        
        # Load conversation history for each assistant
        for assistant_type, chatbot in assistant_chat_histories.items():
            if assistant_type in state["ai_conversations"]:
                chatbot.value = state["ai_conversations"][assistant_type]
        
        # AI Assistant Analytics
        with gr.Accordion("πŸ“Š AI Assistant Analytics", open=False):
            gr.Markdown("### Usage Statistics")
            
            # Create a placeholder for analytics
            # In a real implementation, this would show actual usage data
            usage_data = [
                [assistant_type, len(state["ai_conversations"].get(assistant_type, []))]
                for assistant_type in AI_ASSISTANT_TYPES
            ]
            
            usage_stats = gr.Dataframe(
                headers=["Assistant Type", "Messages"],
                datatype=["str", "number"],
                value=usage_data,
                label="Assistant Usage"
            )
            
            # Refresh button for analytics
            refresh_stats_btn = gr.Button("Refresh Statistics")
            
            def update_stats():
                return [
                    [assistant_type, len(state["ai_conversations"].get(assistant_type, []))]
                    for assistant_type in AI_ASSISTANT_TYPES
                ]
            
            refresh_stats_btn.click(
                update_stats,
                inputs=[],
                outputs=[usage_stats]
            )
        
        # Record page visit in activity
        record_activity({
            "type": "page_viewed",
            "page": "AI Assistant Hub",
            "timestamp": get_timestamp()
        })