File size: 22,271 Bytes
8e4018d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import gradio as gr
import datetime
from typing import Dict, List, Any, Union, Optional
import random
import os
import json

# Import utilities
from utils.storage import load_data, save_data, safe_get
from utils.state import generate_id, get_timestamp, record_activity
from utils.ai_models import analyze_sentiment, summarize_text
from utils.config import FILE_PATHS
from utils.logging import setup_logger
from utils.error_handling import handle_exceptions
from utils.data_analysis import (
    filter_data_by_time_period,
    create_completion_rate_chart,
    create_status_distribution_chart,
    create_priority_distribution_chart,
    create_time_series_chart,
    create_completion_time_chart,
    create_tags_distribution_chart,
    create_activity_heatmap,
    create_calendar_heatmap,
    create_sentiment_chart,
    create_model_usage_distribution,
    create_model_usage_over_time
)

# Initialize logger
logger = setup_logger(__name__)

@handle_exceptions
def create_analytics_page(state: Dict[str, Any]) -> None:
    """
    Create the Analytics page with data visualizations and insights
    
    Args:
        state: Application state
    """
    logger.info("Creating analytics page")
    
    # Create the analytics page layout
    with gr.Column(elem_id="analytics-page"):
        gr.Markdown("# 📊 Analytics")
        gr.Markdown("*Insights and visualizations of your productivity data*")
        
        # Time period selector
        with gr.Row():
            time_period = gr.Dropdown(
                choices=["Last 7 Days", "Last 30 Days", "Last 90 Days", "All Time"],
                value="Last 30 Days",
                label="Time Period",
                elem_id="time-period-selector"
            )
            refresh_btn = gr.Button("Refresh Data")
        
        # Dashboard tabs
        with gr.Tabs():
            # Task Analytics
            with gr.TabItem("Tasks"):
                with gr.Row():
                    # Task completion rate
                    with gr.Column(scale=1):
                        task_completion_chart = gr.Plot(
                            label="Task Completion Rate",
                            elem_id="task-completion-chart"
                        )
                    
                    # Task status distribution
                    with gr.Column(scale=1):
                        task_status_chart = gr.Plot(
                            label="Task Status Distribution",
                            elem_id="task-status-chart"
                        )
                
                with gr.Row():
                    # Task priority distribution
                    with gr.Column(scale=1):
                        task_priority_chart = gr.Plot(
                            label="Task Priority Distribution",
                            elem_id="task-priority-chart"
                        )
                    
                    # Task creation over time
                    with gr.Column(scale=1):
                        task_creation_chart = gr.Plot(
                            label="Task Creation Over Time",
                            elem_id="task-creation-chart"
                        )
                
                with gr.Row():
                    # Task completion time
                    with gr.Column(scale=1):
                        task_completion_time_chart = gr.Plot(
                            label="Average Completion Time",
                            elem_id="task-completion-time-chart"
                        )
                    
                    # Task tags distribution
                    with gr.Column(scale=1):
                        task_tags_chart = gr.Plot(
                            label="Task Tags Distribution",
                            elem_id="task-tags-chart"
                        )
            
            # Notes Analytics
            with gr.TabItem("Notes"):
                with gr.Row():
                    # Notes creation over time
                    with gr.Column(scale=1):
                        notes_creation_chart = gr.Plot(
                            label="Notes Creation Over Time",
                            elem_id="notes-creation-chart"
                        )
                    
                    # Notes length distribution
                    with gr.Column(scale=1):
                        notes_length_chart = gr.Plot(
                            label="Notes Length Distribution",
                            elem_id="notes-length-chart"
                        )
                
                with gr.Row():
                    # Notes tags distribution
                    with gr.Column(scale=1):
                        notes_tags_chart = gr.Plot(
                            label="Notes Tags Distribution",
                            elem_id="notes-tags-chart"
                        )
                    
                    # Notes sentiment analysis
                    with gr.Column(scale=1):
                        notes_sentiment_chart = gr.Plot(
                            label="Notes Sentiment Analysis",
                            elem_id="notes-sentiment-chart"
                        )
            
            # Goals Analytics
            with gr.TabItem("Goals"):
                with gr.Row():
                    # Goal completion rate
                    with gr.Column(scale=1):
                        goal_completion_chart = gr.Plot(
                            label="Goal Completion Rate",
                            elem_id="goal-completion-chart"
                        )
                    
                    # Goal progress distribution
                    with gr.Column(scale=1):
                        goal_progress_chart = gr.Plot(
                            label="Goal Progress Distribution",
                            elem_id="goal-progress-chart"
                        )
                
                with gr.Row():
                    # Goal creation over time
                    with gr.Column(scale=1):
                        goal_creation_chart = gr.Plot(
                            label="Goal Creation Over Time",
                            elem_id="goal-creation-chart"
                        )
                    
                    # Goal completion time
                    with gr.Column(scale=1):
                        goal_completion_time_chart = gr.Plot(
                            label="Average Goal Completion Time",
                            elem_id="goal-completion-time-chart"
                        )
            
            # Activity Analytics
            with gr.TabItem("Activity"):
                with gr.Row():
                    # Activity by day of week
                    with gr.Column(scale=1):
                        activity_dow_chart = gr.Plot(
                            label="Activity by Day of Week",
                            elem_id="activity-dow-chart"
                        )
                    
                    # Activity by hour of day
                    with gr.Column(scale=1):
                        activity_hour_chart = gr.Plot(
                            label="Activity by Hour of Day",
                            elem_id="activity-hour-chart"
                        )
                
                with gr.Row():
                    # Activity by type
                    with gr.Column(scale=1):
                        activity_type_chart = gr.Plot(
                            label="Activity by Type",
                            elem_id="activity-type-chart"
                        )
                    
                    # Activity over time
                    with gr.Column(scale=1):
                        activity_time_chart = gr.Plot(
                            label="Activity Over Time",
                            elem_id="activity-time-chart"
                        )
            
            # AI Usage Analytics
            with gr.TabItem("AI Usage"):
                with gr.Row():
                    # AI model usage distribution
                    with gr.Column(scale=1):
                        ai_model_chart = gr.Plot(
                            label="AI Model Usage Distribution",
                            elem_id="ai-model-chart"
                        )
                    
                    # AI usage over time
                    with gr.Column(scale=1):
                        ai_usage_chart = gr.Plot(
                            label="AI Usage Over Time",
                            elem_id="ai-usage-chart"
                        )
        
        # Key metrics
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### Key Metrics")
                metrics_md = gr.Markdown("*Loading metrics...*")
        
        # Function to update metrics
        @handle_exceptions
        def update_metrics(period):
            """Update metrics based on selected time period"""
            logger.debug(f"Updating metrics for period: {period}")
            
            # Get data
            tasks = safe_get(state, "tasks", [])
            notes = safe_get(state, "notes", [])
            goals = safe_get(state, "goals", [])
            activity = safe_get(state, "activity_feed", [])
            
            # Calculate metrics
            total_tasks = len(tasks)
            completed_tasks = len([t for t in tasks if safe_get(t, "completed", False)])
            total_notes = len(notes)
            total_goals = len(goals)
            completed_goals = len([g for g in goals if safe_get(g, "completed", False)])
            total_activity = len(activity)
            
            # Format metrics
            metrics = [
                f"**Total Tasks:** {total_tasks}",
                f"**Completed Tasks:** {completed_tasks}",
                f"**Task Completion Rate:** {(completed_tasks/total_tasks*100):.1f}% if total_tasks > 0 else '0%'",
                f"**Total Notes:** {total_notes}",
                f"**Total Goals:** {total_goals}",
                f"**Goal Completion Rate:** {(completed_goals/total_goals*100):.1f}% if total_goals > 0 else '0%'",
                f"**Total Activities:** {total_activity}"
            ]
            
            return "\n\n".join(metrics)
        
        # Function to update all charts
        @handle_exceptions
        def update_charts(period):
            """Update all charts based on selected time period"""
            logger.debug(f"Updating charts for period: {period}")
            
            # Get data
            tasks = safe_get(state, "tasks", [])
            notes = safe_get(state, "notes", [])
            goals = safe_get(state, "goals", [])
            activity = safe_get(state, "activity_feed", [])
            
            # Filter data by time period
            filtered_tasks = filter_data_by_time_period(tasks, period)
            filtered_notes = filter_data_by_time_period(notes, period)
            filtered_goals = filter_data_by_time_period(goals, period)
            filtered_activity = filter_data_by_time_period(activity, period)
            
            # Update task charts
            task_completion_fig = create_completion_rate_chart(
                filtered_tasks, 
                title="Task Completion Rate",
                completed_key="completed"
            )
            
            task_status_fig = create_status_distribution_chart(
                filtered_tasks,
                title="Task Status Distribution"
            )
            
            task_priority_fig = create_priority_distribution_chart(
                filtered_tasks,
                title="Task Priority Distribution"
            )
            
            task_creation_fig = create_time_series_chart(
                filtered_tasks,
                title="Task Creation Over Time",
                timestamp_key="created_at"
            )
            
            task_completion_time_fig = create_completion_time_chart(
                filtered_tasks,
                title="Task Completion Time Distribution",
                created_key="created_at",
                completed_key="completed_at"
            )
            
            task_tags_fig = create_tags_distribution_chart(
                filtered_tasks,
                title="Task Tags Distribution",
                tags_key="tags"
            )
            
            # Update notes charts
            notes_creation_fig = create_time_series_chart(
                filtered_notes,
                title="Notes Creation Over Time",
                timestamp_key="created_at"
            )
            
            # Create notes length distribution chart
            notes_with_length = []
            for note in filtered_notes:
                content = safe_get(note, "content", "")
                if content:
                    notes_with_length.append({
                        **note,
                        "length": len(content)
                    })
            
            # Sort notes by length
            notes_with_length.sort(key=lambda x: x["length"])
            
            # Create a simple bar chart for notes length
            import plotly.graph_objects as go
            notes_length_fig = go.Figure(data=go.Bar(
                x=[i for i in range(len(notes_with_length))],
                y=[note["length"] for note in notes_with_length],
                marker_color="#4CAF50"
            ))
            
            notes_length_fig.update_layout(
                title="Notes Length Distribution",
                xaxis_title="Note Index",
                yaxis_title="Character Count",
                margin=dict(l=20, r=20, t=40, b=20),
                height=300
            )
            
            notes_tags_fig = create_tags_distribution_chart(
                filtered_notes,
                title="Notes Tags Distribution",
                tags_key="tags"
            )
            
            notes_sentiment_fig = create_sentiment_chart(
                filtered_notes,
                title="Notes Sentiment Analysis",
                content_key="content",
                timestamp_key="created_at"
            )
            
            # Update goals charts
            goal_completion_fig = create_completion_rate_chart(
                filtered_goals,
                title="Goal Completion Rate",
                completed_key="completed"
            )
            
            # Create goal progress distribution chart
            # This is a placeholder - you might want to implement a more specific chart
            goal_progress_fig = create_status_distribution_chart(
                filtered_goals,
                title="Goal Progress Distribution",
                status_key="status"
            )
            
            goal_creation_fig = create_time_series_chart(
                filtered_goals,
                title="Goal Creation Over Time",
                timestamp_key="created_at"
            )
            
            goal_completion_time_fig = create_completion_time_chart(
                filtered_goals,
                title="Goal Completion Time Distribution",
                created_key="created_at",
                completed_key="completed_at"
            )
            
            # Update activity charts
            activity_dow_hour_fig = create_activity_heatmap(
                filtered_activity,
                title="Activity by Day and Hour",
                timestamp_key="timestamp"
            )
            
            # Split the heatmap into two separate charts for day of week and hour of day
            import numpy as np
            import plotly.graph_objects as go
            
            # Day of week activity
            day_counts = np.zeros(7)  # 7 days
            for item in filtered_activity:
                timestamp = item.get("timestamp")
                if not timestamp:
                    continue
                    
                # Convert timestamp to datetime
                if isinstance(timestamp, str):
                    try:
                        date = datetime.datetime.fromisoformat(timestamp.replace('Z', '+00:00'))
                    except ValueError:
                        continue
                else:
                    date = datetime.datetime.fromtimestamp(timestamp)
                    
                # Get day of week (0 = Monday, 6 = Sunday)
                day_of_week = date.weekday()
                day_counts[day_of_week] += 1
            
            days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
            activity_dow_fig = go.Figure(data=go.Bar(
                x=days,
                y=day_counts,
                marker_color="#2196F3"
            ))
            
            activity_dow_fig.update_layout(
                title="Activity by Day of Week",
                xaxis_title="Day",
                yaxis_title="Count",
                margin=dict(l=20, r=20, t=40, b=20),
                height=300
            )
            
            # Hour of day activity
            hour_counts = np.zeros(24)  # 24 hours
            for item in filtered_activity:
                timestamp = item.get("timestamp")
                if not timestamp:
                    continue
                    
                # Convert timestamp to datetime
                if isinstance(timestamp, str):
                    try:
                        date = datetime.datetime.fromisoformat(timestamp.replace('Z', '+00:00'))
                    except ValueError:
                        continue
                else:
                    date = datetime.datetime.fromtimestamp(timestamp)
                    
                # Get hour
                hour = date.hour
                hour_counts[hour] += 1
            
            hours = [f"{h:02d}:00" for h in range(24)]
            activity_hour_fig = go.Figure(data=go.Bar(
                x=hours,
                y=hour_counts,
                marker_color="#9C27B0"
            ))
            
            activity_hour_fig.update_layout(
                title="Activity by Hour of Day",
                xaxis_title="Hour",
                yaxis_title="Count",
                margin=dict(l=20, r=20, t=40, b=20),
                height=300
            )
            
            # Activity by type
            activity_types = {}
            for item in filtered_activity:
                activity_type = safe_get(item, "type", "unknown")
                # Clean up the activity type for better display
                display_type = activity_type.replace("_", " ").title()
                activity_types[display_type] = activity_types.get(display_type, 0) + 1
            
            # Sort by count
            sorted_types = sorted(activity_types.items(), key=lambda x: x[1], reverse=True)
            types = [t[0] for t in sorted_types[:10]]  # Top 10 types
            type_counts = [t[1] for t in sorted_types[:10]]
            
            activity_type_fig = go.Figure(data=go.Bar(
                x=types,
                y=type_counts,
                marker_color="#FF9800"
            ))
            
            activity_type_fig.update_layout(
                title="Activity by Type",
                xaxis_title="Type",
                yaxis_title="Count",
                margin=dict(l=20, r=20, t=40, b=20),
                height=300
            )
            
            # Activity over time
            activity_time_fig = create_time_series_chart(
                filtered_activity,
                title="Activity Over Time",
                timestamp_key="timestamp"
            )
            
            # Update AI usage charts
            ai_model_fig = create_model_usage_distribution(
                filtered_activity,
                title="AI Model Usage Distribution"
            )
            
            ai_usage_fig = create_model_usage_over_time(
                filtered_activity,
                title="AI Usage Over Time",
                timestamp_key="timestamp"
            )
            
            # Return all updated charts
            return (
                task_completion_fig, task_status_fig, task_priority_fig, task_creation_fig,
                task_completion_time_fig, task_tags_fig, notes_creation_fig, notes_length_fig,
                notes_tags_fig, notes_sentiment_fig, goal_completion_fig, goal_progress_fig,
                goal_creation_fig, goal_completion_time_fig, activity_dow_fig, activity_hour_fig,
                activity_type_fig, activity_time_fig, ai_model_fig, ai_usage_fig
            )
        
        # Set up refresh button
        refresh_btn.click(
            fn=lambda period: (update_metrics(period), *update_charts(period)),
            inputs=[time_period],
            outputs=[
                metrics_md,
                task_completion_chart, task_status_chart, task_priority_chart, task_creation_chart,
                task_completion_time_chart, task_tags_chart, notes_creation_chart, notes_length_chart,
                notes_tags_chart, notes_sentiment_chart, goal_completion_chart, goal_progress_chart,
                goal_creation_chart, goal_completion_time_chart, activity_dow_chart, activity_hour_chart,
                activity_type_chart, activity_time_chart, ai_model_chart, ai_usage_chart
            ]
        )
        
        # Initialize metrics and charts
        metrics_md.value = update_metrics("Last 30 Days")
        (
            task_completion_chart.value, task_status_chart.value, task_priority_chart.value, task_creation_chart.value,
            task_completion_time_chart.value, task_tags_chart.value, notes_creation_chart.value, notes_length_chart.value,
            notes_tags_chart.value, notes_sentiment_chart.value, goal_completion_chart.value, goal_progress_chart.value,
            goal_creation_chart.value, goal_completion_time_chart.value, activity_dow_chart.value, activity_hour_chart.value,
            activity_type_chart.value, activity_time_chart.value, ai_model_chart.value, ai_usage_chart.value
        ) = update_charts("Last 30 Days")