File size: 10,415 Bytes
b84426c
 
 
d1e9503
 
 
4f1b3bc
8b2043f
 
b84426c
8b2043f
4f1b3bc
b84426c
4f1b3bc
b84426c
 
 
 
 
 
 
 
 
 
 
 
 
4f1b3bc
b84426c
 
 
 
4f1b3bc
b84426c
 
 
 
4f1b3bc
b84426c
 
 
 
 
 
 
 
 
 
4f1b3bc
b84426c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f1b3bc
b84426c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f1b3bc
 
b84426c
 
 
 
8b2043f
4f1b3bc
 
b84426c
 
 
 
8b2043f
4f1b3bc
 
b84426c
 
 
 
8b2043f
4f1b3bc
b84426c
 
 
 
 
 
4f1b3bc
8f8bf22
b84426c
 
 
 
 
8b2043f
b84426c
eef1bbe
b84426c
 
eef1bbe
 
b84426c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eef1bbe
 
b84426c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eef1bbe
 
b84426c
 
 
 
 
 
 
 
eef1bbe
b84426c
eef1bbe
b84426c
 
eef1bbe
 
b84426c
eef1bbe
 
b84426c
eef1bbe
 
b84426c
eef1bbe
b84426c
 
 
 
 
eef1bbe
 
b84426c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eef1bbe
b84426c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
"""
Dashboard page for the application
"""
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime, timedelta
from utils.storage import load_data, save_data, load_dataframe, save_dataframe
from utils.error_handling import handle_data_exceptions, log_error, display_error


@handle_data_exceptions
def create_dashboard_page():
    """
    Create the main dashboard page
    """
    st.title("πŸ“Š Dashboard")
    st.markdown("---")
    
    # Initialize session state
    if 'dashboard_data' not in st.session_state:
        st.session_state.dashboard_data = generate_sample_data()
    
    # Sidebar controls
    with st.sidebar:
        st.header("Dashboard Controls")
        
        # Data refresh button
        if st.button("πŸ”„ Refresh Data"):
            st.session_state.dashboard_data = generate_sample_data()
            st.success("Data refreshed!")
        
        # Date range selector
        st.subheader("Date Range")
        start_date = st.date_input("Start Date", value=datetime.now() - timedelta(days=30))
        end_date = st.date_input("End Date", value=datetime.now())
        
        # Chart type selector
        chart_type = st.selectbox(
            "Chart Type",
            ["Line Chart", "Bar Chart", "Area Chart", "Scatter Plot"]
        )
    
    # Main dashboard content
    create_metrics_section()
    create_charts_section(chart_type)
    create_data_table_section()


def generate_sample_data():
    """
    Generate sample data for the dashboard
    """
    import random
    import numpy as np
    
    # Generate date range
    dates = pd.date_range(start='2024-01-01', end='2024-12-31', freq='D')
    
    # Generate sample metrics
    data = {
        'date': dates,
        'sales': [random.randint(1000, 5000) + random.randint(-500, 500) for _ in dates],
        'users': [random.randint(100, 1000) + random.randint(-100, 100) for _ in dates],
        'revenue': [random.randint(5000, 25000) + random.randint(-2000, 2000) for _ in dates],
        'conversion_rate': [round(random.uniform(0.02, 0.08), 4) for _ in dates]
    }
    
    return pd.DataFrame(data)


def create_metrics_section():
    """
    Create metrics cards section
    """
    st.subheader("πŸ“ˆ Key Metrics")
    
    data = st.session_state.dashboard_data
    
    # Calculate metrics
    total_sales = data['sales'].sum()
    total_users = data['users'].sum()
    total_revenue = data['revenue'].sum()
    avg_conversion = data['conversion_rate'].mean()
    
    # Previous period comparison (last 30 days vs previous 30 days)
    recent_data = data.tail(30)
    previous_data = data.iloc[-60:-30] if len(data) >= 60 else data.head(30)
    
    sales_change = ((recent_data['sales'].sum() - previous_data['sales'].sum()) / previous_data['sales'].sum()) * 100
    users_change = ((recent_data['users'].sum() - previous_data['users'].sum()) / previous_data['users'].sum()) * 100
    revenue_change = ((recent_data['revenue'].sum() - previous_data['revenue'].sum()) / previous_data['revenue'].sum()) * 100
    conversion_change = ((recent_data['conversion_rate'].mean() - previous_data['conversion_rate'].mean()) / previous_data['conversion_rate'].mean()) * 100
    
    # Display metrics in columns
    col1, col2, col3, col4 = st.columns(4)
    
    with col1:
        st.metric(
            label="Total Sales",
            value=f"{total_sales:,}",
            delta=f"{sales_change:.1f}%"
        )
    
    with col2:
        st.metric(
            label="Total Users", 
            value=f"{total_users:,}",
            delta=f"{users_change:.1f}%"
        )
    
    with col3:
        st.metric(
            label="Total Revenue",
            value=f"${total_revenue:,}",
            delta=f"{revenue_change:.1f}%"
        )
    
    with col4:
        st.metric(
            label="Avg Conversion Rate",
            value=f"{avg_conversion:.2%}",
            delta=f"{conversion_change:.1f}%"
        )


def create_charts_section(chart_type):
    """
    Create charts section
    """
    st.subheader("πŸ“Š Analytics Charts")
    
    data = st.session_state.dashboard_data
    
    # Create two columns for charts
    col1, col2 = st.columns(2)
    
    with col1:
        st.write("**Sales Over Time**")
        if chart_type == "Line Chart":
            fig = px.line(data, x='date', y='sales', title='Daily Sales')
        elif chart_type == "Bar Chart":
            # Group by month for bar chart
            monthly_data = data.groupby(data['date'].dt.to_period('M'))['sales'].sum().reset_index()
            monthly_data['date'] = monthly_data['date'].astype(str)
            fig = px.bar(monthly_data, x='date', y='sales', title='Monthly Sales')
        elif chart_type == "Area Chart":
            fig = px.area(data, x='date', y='sales', title='Sales Area Chart')
        else:  # Scatter Plot
            fig = px.scatter(data, x='date', y='sales', title='Sales Scatter Plot')
        
        fig.update_layout(height=400)
        st.plotly_chart(fig, use_container_width=True)
    
    with col2:
        st.write("**Revenue vs Users**")
        fig2 = px.scatter(
            data, 
            x='users', 
            y='revenue',
            size='sales',
            color='conversion_rate',
            title='Revenue vs Users (sized by Sales)',
            color_continuous_scale='Viridis'
        )
        fig2.update_layout(height=400)
        st.plotly_chart(fig2, use_container_width=True)
    
    # Full width chart
    st.write("**Multi-Metric Trend Analysis**")
    
    # Normalize data for comparison
    normalized_data = data.copy()
    for col in ['sales', 'users', 'revenue']:
        normalized_data[f'{col}_normalized'] = (normalized_data[col] - normalized_data[col].min()) / (normalized_data[col].max() - normalized_data[col].min())
    
    fig3 = go.Figure()
    fig3.add_trace(go.Scatter(x=normalized_data['date'], y=normalized_data['sales_normalized'], name='Sales (Normalized)'))
    fig3.add_trace(go.Scatter(x=normalized_data['date'], y=normalized_data['users_normalized'], name='Users (Normalized)'))
    fig3.add_trace(go.Scatter(x=normalized_data['date'], y=normalized_data['revenue_normalized'], name='Revenue (Normalized)'))
    
    fig3.update_layout(
        title='Normalized Trends Comparison',
        xaxis_title='Date',
        yaxis_title='Normalized Value (0-1)',
        height=400
    )
    
    st.plotly_chart(fig3, use_container_width=True)


def create_data_table_section():
    """
    Create data table section
    """
    st.subheader("πŸ“‹ Data Table")
    
    data = st.session_state.dashboard_data
    
    # Add filters
    col1, col2, col3 = st.columns(3)
    
    with col1:
        min_sales = st.number_input("Min Sales", value=0, max_value=int(data['sales'].max()))
    
    with col2:
        min_users = st.number_input("Min Users", value=0, max_value=int(data['users'].max()))
    
    with col3:
        min_revenue = st.number_input("Min Revenue", value=0, max_value=int(data['revenue'].max()))
    
    # Filter data
    filtered_data = data[
        (data['sales'] >= min_sales) & 
        (data['users'] >= min_users) & 
        (data['revenue'] >= min_revenue)
    ]
    
    # Display filtered data
    st.write(f"Showing {len(filtered_data)} of {len(data)} records")
    
    # Format data for display
    display_data = filtered_data.copy()
    display_data['date'] = display_data['date'].dt.strftime('%Y-%m-%d')
    display_data['revenue'] = display_data['revenue'].apply(lambda x: f"${x:,}")
    display_data['conversion_rate'] = display_data['conversion_rate'].apply(lambda x: f"{x:.2%}")
    
    st.dataframe(
        display_data,
        use_container_width=True,
        hide_index=True,
        column_config={
            "date": "Date",
            "sales": st.column_config.NumberColumn("Sales", format="%d"),
            "users": st.column_config.NumberColumn("Users", format="%d"),
            "revenue": "Revenue",
            "conversion_rate": "Conversion Rate"
        }
    )
    
    # Download button
    csv = data.to_csv(index=False)
    st.download_button(
        label="πŸ“₯ Download Data as CSV",
        data=csv,
        file_name=f"dashboard_data_{datetime.now().strftime('%Y%m%d')}.csv",
        mime="text/csv"
    )


def create_summary_statistics():
    """
    Create summary statistics section
    """
    data = st.session_state.dashboard_data
    
    st.subheader("πŸ“Š Summary Statistics")
    
    # Calculate statistics
    stats = data[['sales', 'users', 'revenue', 'conversion_rate']].describe()
    
    # Display statistics table
    st.dataframe(
        stats,
        use_container_width=True,
        column_config={
            "sales": st.column_config.NumberColumn("Sales", format="%.0f"),
            "users": st.column_config.NumberColumn("Users", format="%.0f"),
            "revenue": st.column_config.NumberColumn("Revenue", format="%.0f"),
            "conversion_rate": st.column_config.NumberColumn("Conversion Rate", format="%.4f")
        }
    )


# Additional utility functions
@handle_data_exceptions 
def export_dashboard_data(format_type='csv'):
    """
    Export dashboard data in specified format
    """
    data = st.session_state.dashboard_data
    
    if format_type == 'csv':
        return data.to_csv(index=False)
    elif format_type == 'json':
        return data.to_json(orient='records', date_format='iso')
    elif format_type == 'excel':
        # This would require openpyxl
        return data.to_excel(index=False)
    else:
        raise ValueError(f"Unsupported format: {format_type}")


@handle_data_exceptions
def load_dashboard_config():
    """
    Load dashboard configuration
    """
    try:
        config = load_data('dashboard_config.json')
        return config if config else get_default_config()
    except:
        return get_default_config()


def get_default_config():
    """
    Get default dashboard configuration
    """
    return {
        'theme': 'light',
        'default_chart_type': 'Line Chart',
        'refresh_interval': 300,  # 5 minutes
        'show_metrics': True,
        'show_charts': True,
        'show_table': True
    }


@handle_data_exceptions
def save_dashboard_config(config):
    """
    Save dashboard configuration
    """
    return save_data(config, 'dashboard_config.json')