File size: 10,415 Bytes
b84426c d1e9503 4f1b3bc 8b2043f b84426c 8b2043f 4f1b3bc b84426c 4f1b3bc b84426c 4f1b3bc b84426c 4f1b3bc b84426c 4f1b3bc b84426c 4f1b3bc b84426c 4f1b3bc b84426c 4f1b3bc b84426c 8b2043f 4f1b3bc b84426c 8b2043f 4f1b3bc b84426c 8b2043f 4f1b3bc b84426c 4f1b3bc 8f8bf22 b84426c 8b2043f b84426c eef1bbe b84426c eef1bbe b84426c eef1bbe b84426c eef1bbe b84426c eef1bbe b84426c eef1bbe b84426c eef1bbe b84426c eef1bbe b84426c eef1bbe b84426c eef1bbe b84426c eef1bbe b84426c eef1bbe b84426c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
"""
Dashboard page for the application
"""
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime, timedelta
from utils.storage import load_data, save_data, load_dataframe, save_dataframe
from utils.error_handling import handle_data_exceptions, log_error, display_error
@handle_data_exceptions
def create_dashboard_page():
"""
Create the main dashboard page
"""
st.title("π Dashboard")
st.markdown("---")
# Initialize session state
if 'dashboard_data' not in st.session_state:
st.session_state.dashboard_data = generate_sample_data()
# Sidebar controls
with st.sidebar:
st.header("Dashboard Controls")
# Data refresh button
if st.button("π Refresh Data"):
st.session_state.dashboard_data = generate_sample_data()
st.success("Data refreshed!")
# Date range selector
st.subheader("Date Range")
start_date = st.date_input("Start Date", value=datetime.now() - timedelta(days=30))
end_date = st.date_input("End Date", value=datetime.now())
# Chart type selector
chart_type = st.selectbox(
"Chart Type",
["Line Chart", "Bar Chart", "Area Chart", "Scatter Plot"]
)
# Main dashboard content
create_metrics_section()
create_charts_section(chart_type)
create_data_table_section()
def generate_sample_data():
"""
Generate sample data for the dashboard
"""
import random
import numpy as np
# Generate date range
dates = pd.date_range(start='2024-01-01', end='2024-12-31', freq='D')
# Generate sample metrics
data = {
'date': dates,
'sales': [random.randint(1000, 5000) + random.randint(-500, 500) for _ in dates],
'users': [random.randint(100, 1000) + random.randint(-100, 100) for _ in dates],
'revenue': [random.randint(5000, 25000) + random.randint(-2000, 2000) for _ in dates],
'conversion_rate': [round(random.uniform(0.02, 0.08), 4) for _ in dates]
}
return pd.DataFrame(data)
def create_metrics_section():
"""
Create metrics cards section
"""
st.subheader("π Key Metrics")
data = st.session_state.dashboard_data
# Calculate metrics
total_sales = data['sales'].sum()
total_users = data['users'].sum()
total_revenue = data['revenue'].sum()
avg_conversion = data['conversion_rate'].mean()
# Previous period comparison (last 30 days vs previous 30 days)
recent_data = data.tail(30)
previous_data = data.iloc[-60:-30] if len(data) >= 60 else data.head(30)
sales_change = ((recent_data['sales'].sum() - previous_data['sales'].sum()) / previous_data['sales'].sum()) * 100
users_change = ((recent_data['users'].sum() - previous_data['users'].sum()) / previous_data['users'].sum()) * 100
revenue_change = ((recent_data['revenue'].sum() - previous_data['revenue'].sum()) / previous_data['revenue'].sum()) * 100
conversion_change = ((recent_data['conversion_rate'].mean() - previous_data['conversion_rate'].mean()) / previous_data['conversion_rate'].mean()) * 100
# Display metrics in columns
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric(
label="Total Sales",
value=f"{total_sales:,}",
delta=f"{sales_change:.1f}%"
)
with col2:
st.metric(
label="Total Users",
value=f"{total_users:,}",
delta=f"{users_change:.1f}%"
)
with col3:
st.metric(
label="Total Revenue",
value=f"${total_revenue:,}",
delta=f"{revenue_change:.1f}%"
)
with col4:
st.metric(
label="Avg Conversion Rate",
value=f"{avg_conversion:.2%}",
delta=f"{conversion_change:.1f}%"
)
def create_charts_section(chart_type):
"""
Create charts section
"""
st.subheader("π Analytics Charts")
data = st.session_state.dashboard_data
# Create two columns for charts
col1, col2 = st.columns(2)
with col1:
st.write("**Sales Over Time**")
if chart_type == "Line Chart":
fig = px.line(data, x='date', y='sales', title='Daily Sales')
elif chart_type == "Bar Chart":
# Group by month for bar chart
monthly_data = data.groupby(data['date'].dt.to_period('M'))['sales'].sum().reset_index()
monthly_data['date'] = monthly_data['date'].astype(str)
fig = px.bar(monthly_data, x='date', y='sales', title='Monthly Sales')
elif chart_type == "Area Chart":
fig = px.area(data, x='date', y='sales', title='Sales Area Chart')
else: # Scatter Plot
fig = px.scatter(data, x='date', y='sales', title='Sales Scatter Plot')
fig.update_layout(height=400)
st.plotly_chart(fig, use_container_width=True)
with col2:
st.write("**Revenue vs Users**")
fig2 = px.scatter(
data,
x='users',
y='revenue',
size='sales',
color='conversion_rate',
title='Revenue vs Users (sized by Sales)',
color_continuous_scale='Viridis'
)
fig2.update_layout(height=400)
st.plotly_chart(fig2, use_container_width=True)
# Full width chart
st.write("**Multi-Metric Trend Analysis**")
# Normalize data for comparison
normalized_data = data.copy()
for col in ['sales', 'users', 'revenue']:
normalized_data[f'{col}_normalized'] = (normalized_data[col] - normalized_data[col].min()) / (normalized_data[col].max() - normalized_data[col].min())
fig3 = go.Figure()
fig3.add_trace(go.Scatter(x=normalized_data['date'], y=normalized_data['sales_normalized'], name='Sales (Normalized)'))
fig3.add_trace(go.Scatter(x=normalized_data['date'], y=normalized_data['users_normalized'], name='Users (Normalized)'))
fig3.add_trace(go.Scatter(x=normalized_data['date'], y=normalized_data['revenue_normalized'], name='Revenue (Normalized)'))
fig3.update_layout(
title='Normalized Trends Comparison',
xaxis_title='Date',
yaxis_title='Normalized Value (0-1)',
height=400
)
st.plotly_chart(fig3, use_container_width=True)
def create_data_table_section():
"""
Create data table section
"""
st.subheader("π Data Table")
data = st.session_state.dashboard_data
# Add filters
col1, col2, col3 = st.columns(3)
with col1:
min_sales = st.number_input("Min Sales", value=0, max_value=int(data['sales'].max()))
with col2:
min_users = st.number_input("Min Users", value=0, max_value=int(data['users'].max()))
with col3:
min_revenue = st.number_input("Min Revenue", value=0, max_value=int(data['revenue'].max()))
# Filter data
filtered_data = data[
(data['sales'] >= min_sales) &
(data['users'] >= min_users) &
(data['revenue'] >= min_revenue)
]
# Display filtered data
st.write(f"Showing {len(filtered_data)} of {len(data)} records")
# Format data for display
display_data = filtered_data.copy()
display_data['date'] = display_data['date'].dt.strftime('%Y-%m-%d')
display_data['revenue'] = display_data['revenue'].apply(lambda x: f"${x:,}")
display_data['conversion_rate'] = display_data['conversion_rate'].apply(lambda x: f"{x:.2%}")
st.dataframe(
display_data,
use_container_width=True,
hide_index=True,
column_config={
"date": "Date",
"sales": st.column_config.NumberColumn("Sales", format="%d"),
"users": st.column_config.NumberColumn("Users", format="%d"),
"revenue": "Revenue",
"conversion_rate": "Conversion Rate"
}
)
# Download button
csv = data.to_csv(index=False)
st.download_button(
label="π₯ Download Data as CSV",
data=csv,
file_name=f"dashboard_data_{datetime.now().strftime('%Y%m%d')}.csv",
mime="text/csv"
)
def create_summary_statistics():
"""
Create summary statistics section
"""
data = st.session_state.dashboard_data
st.subheader("π Summary Statistics")
# Calculate statistics
stats = data[['sales', 'users', 'revenue', 'conversion_rate']].describe()
# Display statistics table
st.dataframe(
stats,
use_container_width=True,
column_config={
"sales": st.column_config.NumberColumn("Sales", format="%.0f"),
"users": st.column_config.NumberColumn("Users", format="%.0f"),
"revenue": st.column_config.NumberColumn("Revenue", format="%.0f"),
"conversion_rate": st.column_config.NumberColumn("Conversion Rate", format="%.4f")
}
)
# Additional utility functions
@handle_data_exceptions
def export_dashboard_data(format_type='csv'):
"""
Export dashboard data in specified format
"""
data = st.session_state.dashboard_data
if format_type == 'csv':
return data.to_csv(index=False)
elif format_type == 'json':
return data.to_json(orient='records', date_format='iso')
elif format_type == 'excel':
# This would require openpyxl
return data.to_excel(index=False)
else:
raise ValueError(f"Unsupported format: {format_type}")
@handle_data_exceptions
def load_dashboard_config():
"""
Load dashboard configuration
"""
try:
config = load_data('dashboard_config.json')
return config if config else get_default_config()
except:
return get_default_config()
def get_default_config():
"""
Get default dashboard configuration
"""
return {
'theme': 'light',
'default_chart_type': 'Line Chart',
'refresh_interval': 300, # 5 minutes
'show_metrics': True,
'show_charts': True,
'show_table': True
}
@handle_data_exceptions
def save_dashboard_config(config):
"""
Save dashboard configuration
"""
return save_data(config, 'dashboard_config.json') |