File size: 51,416 Bytes
8e4018d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
import gradio as gr
from typing import Dict, List, Any, Union, Optional
import datetime

# Import utilities
from utils.storage import load_data, save_data, safe_get
from utils.state import generate_id, get_timestamp, record_activity
from utils.ai_models import search_content
from utils.config import FILE_PATHS
from utils.logging import setup_logger
from utils.error_handling import handle_exceptions

# Initialize logger
logger = setup_logger(__name__)

@handle_exceptions
def create_search_page(state: Dict[str, Any]) -> None:
    """
    Create the smart search page with advanced search capabilities
    
    Args:
        state: Application state
    """
    logger.info("Creating search page")
    
    # Create the search page layout
    with gr.Column(elem_id="search-page"):
        gr.Markdown("# 🔍 Smart Search")
        gr.Markdown("*Advanced semantic search across all your content*")
        
        # Search bar with suggestions
        with gr.Row(elem_id="search-bar"):
            search_input = gr.Textbox(
                label="Search",
                placeholder="Enter search terms or questions...",
                elem_id="search-input"
            )
            
            # AI Q&A toggle
            ai_qa_toggle = gr.Checkbox(
                label="AI Q&A Mode",
                value=False,
                info="Enable to get AI-generated answers to your questions"
            )
        
        # Search suggestions (will appear as you type)
        search_suggestions = gr.HTML(
            visible=False,
            elem_classes="search-suggestions-container",
            elem_id="search-suggestions"
        )
        
        with gr.Row():
            # Filters
            content_types = gr.CheckboxGroup(
                choices=["📝 Tasks", "📓 Notes", "🎯 Goals", "🤖 AI History"],
                value=["📝 Tasks", "📓 Notes", "🎯 Goals", "🤖 AI History"],
                label="Content Types"
            )
            
            time_period = gr.Dropdown(
                choices=["All Time", "Today", "This Week", "This Month", "This Year", "Custom Range"],
                value="All Time",
                label="Time Period"
            )
            
            sort_by = gr.Dropdown(
                choices=["Relevance", "Date (Newest First)", "Date (Oldest First)"],
                value="Relevance",
                label="Sort By"
            )
        
        # Advanced filters (initially collapsed)
        with gr.Accordion("Advanced Filters", open=False):
            with gr.Row():
                # Tags filter
                tags_filter = gr.Dropdown(
                    choices=get_all_tags(state) if 'get_all_tags' in globals() else [],
                    multiselect=True,
                    label="Filter by Tags",
                    elem_id="tags-filter"
                )
                
                # Status filter (for tasks and goals)
                status_filter = gr.Dropdown(
                    choices=["Any Status", "Not Started", "In Progress", "Completed", "On Hold"],
                    value="Any Status",
                    label="Filter by Status",
                    elem_id="status-filter"
                )
                
                # Priority filter (for tasks)
                priority_filter = gr.Dropdown(
                    choices=["Any Priority", "Low", "Medium", "High", "Urgent"],
                    value="Any Priority",
                    label="Filter by Priority",
                    elem_id="priority-filter"
                )
            
            # Advanced search features
            with gr.Row():
                advanced_features_checkboxes = gr.CheckboxGroup(
                    choices=[
                        "Knowledge Graph", 
                        "Content Clustering", 
                        "Duplicate Detection", 
                        "Trend Analysis", 
                        "Information Gaps"
                    ],
                    label="Enable Advanced Features",
                    value=[]
                )
        
        # Search button
        search_btn = gr.Button("🔍 Search", variant="primary")
        
        # AI Q&A Results (only visible when AI Q&A mode is enabled)
        with gr.Group(visible=False) as ai_qa_group:
            gr.Markdown("### 🤖 AI-Generated Answer")
            ai_answer = gr.Markdown()
            gr.Markdown("#### Sources")
            ai_sources = gr.Dataframe(
                headers=["Source", "Content", "Relevance"],
                datatype=["str", "str", "number"],
                label="Sources",
                col_count=(3, "fixed"),
                interactive=False
            )
        
        # Results tabs
        with gr.Tabs():
            # All Results tab
            with gr.TabItem("All Results"):
                all_results = gr.Dataframe(
                    headers=["Type", "Title", "Content", "Date"],
                    datatype=["str", "str", "str", "str"],
                    label="All Results"
                )
            
            # Tasks tab
            with gr.TabItem("Tasks"):
                task_results = gr.Dataframe(
                    headers=["Title", "Description", "Status", "Due Date"],
                    datatype=["str", "str", "str", "str"],
                    label="Task Results"
                )
            
            # Notes tab
            with gr.TabItem("Notes"):
                note_results = gr.Dataframe(
                    headers=["Title", "Content", "Tags", "Date"],
                    datatype=["str", "str", "str", "str"],
                    label="Note Results"
                )
            
            # Goals tab
            with gr.TabItem("Goals"):
                goal_results = gr.Dataframe(
                    headers=["Title", "Description", "Progress", "Due Date"],
                    datatype=["str", "str", "str", "str"],
                    label="Goal Results"
                )
            
            # AI History tab
            with gr.TabItem("AI History"):
                ai_results = gr.Dataframe(
                    headers=["Query", "Response", "Date"],
                    datatype=["str", "str", "str"],
                    label="AI History Results"
                )
                
            # Insights tab
            with gr.TabItem("Insights"):
                insights_html = gr.HTML(
                    value="<div class='no-results'>Enable advanced features to see insights.</div>",
                    elem_id="insights-content"
                )
        
        # Related content section
        with gr.Accordion("Related Content", open=False, visible=False) as related_content_section:
            gr.Markdown("### 🔗 Related Content")
            related_content = gr.Dataframe(
                headers=["Type", "Title", "Similarity"],
                datatype=["str", "str", "number"],
                col_count=(3, "fixed"),
                interactive=False
            )
            
        # Saved Searches Section
        with gr.Accordion("Saved Searches", open=False):
            with gr.Row():
                with gr.Column(scale=3):
                    saved_search_name = gr.Textbox(
                        label="Save Current Search As",
                        placeholder="Enter a name for this search...",
                        visible=False
                    )
                with gr.Column(scale=1):
                    save_search_btn = gr.Button("💾 Save Search")
                    save_current_search_btn = gr.Button("✅ Save", visible=False)
            
            with gr.Row():
                saved_searches_list = gr.Dataframe(
                    headers=["Name", "Query", "Filters", "Date Saved"],
                    datatype=["str", "str", "str", "str"],
                    label="Your Saved Searches",
                    value=lambda: get_saved_searches(state)
                )
            
            with gr.Row():
                with gr.Column():
                    load_saved_search_btn = gr.Button("📂 Load Selected Search")
                with gr.Column():
                    delete_saved_search_btn = gr.Button("🗑️ Delete Selected Search")
        
        # Function to get all tags from the system
def get_all_tags(state):
    """Get all unique tags from notes, tasks, and goals"""
    all_tags = set()
    
    # Get tags from notes
    notes = safe_get(state, "notes", [])
    for note in notes:
        if "tags" in note and isinstance(note["tags"], list):
            all_tags.update(note["tags"])
    
    # Get tags from tasks
    tasks = safe_get(state, "tasks", [])
    for task in tasks:
        if "tags" in task and isinstance(task["tags"], list):
            all_tags.update(task["tags"])
    
    # Get tags from goals
    goals = safe_get(state, "goals", [])
    for goal in goals:
        if "tags" in goal and isinstance(goal["tags"], list):
            all_tags.update(goal["tags"])
    
    return sorted(list(all_tags))

# Function to perform search
@handle_exceptions
def search(
    query: str,
    types: List[str],
    period: str,
    sort: str
) -> tuple:
    """Perform search across content types"""
    logger.info(f"Performing search: {query}")
    
    # Initialize results
    results = {
        "all": [],
        "tasks": [],
        "notes": [],
        "goals": [],
        "ai": []
    }
    
    # Get time filter
    now = datetime.datetime.now()
    if period == "Past Week":
        cutoff = now - datetime.timedelta(days=7)
    elif period == "Past Month":
        cutoff = now - datetime.timedelta(days=30)
    elif period == "Past Year":
        cutoff = now - datetime.timedelta(days=365)
    else:
        cutoff = None
    
    # Search tasks
    if "Tasks" in types:
        tasks = safe_get(state, "tasks", [])
        for task in tasks:
            if matches_search(task, query, cutoff):
                # Format for task results
                task_result = [
                    task.get("title", ""),
                    task.get("description", ""),
                    task.get("status", ""),
                    task.get("due_date", "")
                ]
                results["tasks"].append(task_result)
                
                # Format for all results
                all_result = [
                    "Task",
                    task.get("title", ""),
                    task.get("description", ""),
                    task.get("created_at", "")
                ]
                results["all"].append(all_result)
    
    # Search notes
    if "Notes" in types:
        notes = safe_get(state, "notes", [])
        for note in notes:
            if matches_search(note, query, cutoff):
                # Format for note results
                note_result = [
                    note.get("title", ""),
                    note.get("content", ""),
                    ", ".join(note.get("tags", [])),
                    note.get("created_at", "")
                ]
                results["notes"].append(note_result)
                
                # Format for all results
                all_result = [
                    "Note",
                    note.get("title", ""),
                    note.get("content", ""),
                    note.get("created_at", "")
                ]
                results["all"].append(all_result)
    
    # Search goals
    if "Goals" in types:
        goals = safe_get(state, "goals", [])
        for goal in goals:
            if matches_search(goal, query, cutoff):
                # Format for goal results
                goal_result = [
                    goal.get("title", ""),
                    goal.get("description", ""),
                    f"{goal.get('progress', 0)}%",
                    goal.get("due_date", "")
                ]
                results["goals"].append(goal_result)
                
                # Format for all results
                all_result = [
                    "Goal",
                    goal.get("title", ""),
                    goal.get("description", ""),
                    goal.get("created_at", "")
                ]
                results["all"].append(all_result)
    
    # Search AI history
    if "AI History" in types:
        ai_history = safe_get(state, "ai_history", [])
        for entry in ai_history:
            if matches_search(entry, query, cutoff):
                # Format for AI results
                ai_result = [
                    entry.get("query", ""),
                    entry.get("response", ""),
                    entry.get("timestamp", "")
                ]
                results["ai"].append(ai_result)
                
                # Format for all results
                all_result = [
                    "AI History",
                    entry.get("query", ""),
                    entry.get("response", ""),
                    entry.get("timestamp", "")
                ]
                results["all"].append(all_result)
    
    # Sort results if needed
    if sort == "Date (Newest)":
        for key in results:
            results[key].sort(key=lambda x: x[3], reverse=True)
    elif sort == "Date (Oldest)":
        for key in results:
            results[key].sort(key=lambda x: x[3])
    
    # Record search activity
    record_activity(state, "Performed Search", {
        "query": query,
        "types": types,
        "period": period,
        "sort": sort
    })
    
    return (
        results["all"],
        results["tasks"],
        results["notes"],
        results["goals"],
        results["ai"]
    )

# Function to check if item matches search criteria
@handle_exceptions
def matches_search(item: Dict[str, Any], query: str, cutoff: Optional[datetime.datetime]) -> bool:
    """Check if an item matches search criteria"""
    # Check time period if cutoff is specified
    if cutoff:
        timestamp = item.get("timestamp", "") or item.get("created_at", "")
        if timestamp:
            try:
                date = datetime.datetime.fromisoformat(timestamp)
                if date < cutoff:
                    return False
            except:
                pass
    
    # Check content match
    query = query.lower()
    for value in item.values():
        if isinstance(value, str) and query in value.lower():
            return True
        elif isinstance(value, list):
            for v in value:
                if isinstance(v, str) and query in v.lower():
                    return True
    
    return False
        
        # Function to generate search suggestions
        def generate_suggestions(query):
            """Generate search suggestions based on partial query"""
            if not query or len(query) < 2:
                return gr.update(visible=False)
            
            # Get recent searches and popular content
            recent_searches = safe_get(state, "search_history", [])
            recent_searches = [s.get("query") for s in recent_searches if s.get("query", "").lower().startswith(query.lower())][:5]
            
            # Get popular content titles
            tasks = safe_get(state, "tasks", [])
            notes = safe_get(state, "notes", [])
            goals = safe_get(state, "goals", [])
            
            popular_titles = []
            for item in tasks + notes + goals:
                title = item.get("title", "")
                if title and query.lower() in title.lower():
                    popular_titles.append(title)
            
            popular_titles = popular_titles[:5]  # Limit to 5 suggestions
            
            # Format suggestions
            suggestions_html = "<div class='search-suggestions'>\n"
            
            if recent_searches:
                suggestions_html += "<p><strong>Recent Searches:</strong></p>\n<ul>\n"
                for search in recent_searches:
                    suggestions_html += f"<li><a href='#' onclick='document.querySelector(\"#search-input\").value = \"{search}\"; return false;'>{search}</a></li>\n"
                suggestions_html += "</ul>\n"
            
            if popular_titles:
                suggestions_html += "<p><strong>Popular Content:</strong></p>\n<ul>\n"
                for title in popular_titles:
                    suggestions_html += f"<li><a href='#' onclick='document.querySelector(\"#search-input\").value = \"{title}\"; return false;'>{title}</a></li>\n"
                suggestions_html += "</ul>\n"
            
            suggestions_html += "</div>"
            
            if recent_searches or popular_titles:
                return gr.update(value=suggestions_html, visible=True)
            else:
                return gr.update(visible=False)
        
        # Function to perform semantic search
        @handle_exceptions
        def semantic_search(query, content_types, time_period, sort_by, ai_qa_mode, tags=None, status=None, priority=None, advanced_features=None):
            """Perform semantic search across all content based on query and filters with advanced discovery features"""
            if not query.strip():
                return [], [], [], [], [], gr.update(visible=False), "", [], gr.update(visible=False), ""
            
            # Clean content types (remove icons)
            content_types = [ct.split(" ", 1)[1].lower() if " " in ct else ct.lower() for ct in content_types]
            
            # Initialize results
            all_results = []
            tasks_results = []
            notes_results = []
            goals_results = []
            ai_history_results = []
            
            # Collect all items for searching
            all_items = []
            
            # Search tasks
            if "tasks" in content_types:
                tasks = safe_get(state, "tasks", [])
                for task in tasks:
                    task["_type"] = "task"
                    all_items.append(task)
            
            # Search notes
            if "notes" in content_types:
                notes = safe_get(state, "notes", [])
                for note in notes:
                    note["_type"] = "note"
                    all_items.append(note)
            
            # Search goals
            if "goals" in content_types:
                goals = safe_get(state, "goals", [])
                for goal in goals:
                    goal["_type"] = "goal"
                    all_items.append(goal)
            
            # Search AI history
            if "ai history" in content_types:
                ai_history = safe_get(state, "ai_history", [])
                for entry in ai_history:
                    entry["_type"] = "ai_history"
                    all_items.append(entry)
            
            # Apply time period filter
            filtered_items = []
            for item in all_items:
                if matches_time_period(item, time_period):
                    filtered_items.append(item)
            
            # Apply advanced filters if provided
            if tags and len(tags) > 0:
                filtered_items = [item for item in filtered_items if "tags" in item and any(tag in item["tags"] for tag in tags)]
            
            if status and status != "Any Status":
                filtered_items = [item for item in filtered_items if "status" in item and item["status"] == status]
            
            if priority and priority != "Any Priority":
                filtered_items = [item for item in filtered_items if "priority" in item and item["priority"] == priority]
            
            # Initialize insights dictionary for advanced features
            insights = {}
            insights_html = ""
            
            # Perform semantic search using search_content function
            try:
                search_results = search_content(query, filtered_items)
                
                # Apply advanced search features if requested
                if advanced_features and len(advanced_features) > 0:
                    # Knowledge graph generation
                    if "Knowledge Graph" in advanced_features:
                        from utils.ai_models import build_knowledge_graph
                        insights["knowledge_graph"] = build_knowledge_graph([item for item, _ in search_results[:20]])
                    
                    # Content clustering
                    if "Content Clustering" in advanced_features:
                        from utils.ai_models import cluster_content
                        insights["clusters"] = cluster_content([item for item, _ in search_results], num_clusters=5)
                    
                    # Duplicate detection
                    if "Duplicate Detection" in advanced_features:
                        from utils.ai_models import detect_duplicates
                        insights["potential_duplicates"] = detect_duplicates([item for item, _ in search_results])
                    
                    # Trend analysis
                    if "Trend Analysis" in advanced_features:
                        from utils.ai_models import identify_trends
                        insights["trends"] = identify_trends([item for item, _ in search_results])
                    
                    # Information gaps
                    if "Information Gaps" in advanced_features:
                        from utils.ai_models import identify_information_gaps
                        insights["information_gaps"] = identify_information_gaps([item for item, _ in search_results])
                    
                    # Format insights for display
                    insights_html = format_insights(insights)
                else:
                    insights_html = "<div class='no-results'>Enable advanced features to see insights.</div>"
            except Exception as e:
                # Fallback to keyword search if semantic search fails
                logger.error(f"Semantic search failed: {str(e)}. Falling back to keyword search.")
                search_results = [(item, calculate_relevance(item, query)) for item in filtered_items if keyword_matches(item, query)]
                insights_html = "<div class='no-results'>Enable advanced features to see insights.</div>"
            
            # Process search results
            for item, relevance in search_results:
                item_type = item.get("_type", "unknown")
                
                if item_type == "task":
                    # Format for tasks results
                    tasks_results.append([
                        item.get("title", "Untitled Task"),
                        item.get("description", ""),
                        item.get("status", "Not Started"),
                        item.get("due_date", "No due date")
                    ])
                    
                    # Format for all results
                    all_results.append([
                        "Task",
                        item.get("title", "Untitled Task"),
                        item.get("description", ""),
                        item.get("created_at", "")
                    ])
                
                elif item_type == "note":
                    # Format for notes results
                    content_preview = item.get("content", "")[:50] + "..." if len(item.get("content", "")) > 50 else item.get("content", "")
                    tags = ", ".join(item.get("tags", []))
                    notes_results.append([
                        item.get("title", "Untitled Note"),
                        content_preview,
                        tags,
                        item.get("created_at", "No date")
                    ])
                    
                    # Format for all results
                    all_results.append([
                        "Note",
                        item.get("title", "Untitled Note"),
                        content_preview,
                        item.get("created_at", "No date")
                    ])
                
                elif item_type == "goal":
                    # Format for goals results
                    goals_results.append([
                        item.get("title", "Untitled Goal"),
                        item.get("description", ""),
                        f"{item.get('progress', 0)}%",
                        item.get("due_date", "No target date")
                    ])
                    
                    # Format for all results
                    all_results.append([
                        "Goal",
                        item.get("title", "Untitled Goal"),
                        item.get("description", ""),
                        item.get("created_at", "No date")
                    ])
                
                elif item_type == "ai_history":
                    # Format for AI history results
                    prompt = item.get("query", "")
                    response = item.get("response", "")[:50] + "..." if len(item.get("response", "")) > 50 else item.get("response", "")
                    ai_history_results.append([
                        prompt,
                        response,
                        item.get("timestamp", "No date")
                    ])
                    
                    # Format for all results
                    all_results.append([
                        "AI History",
                        prompt,
                        response,
                        item.get("timestamp", "No date")
                    ])
            
            # Sort results based on sort_by parameter
            if sort_by == "Date (Newest First)":
                all_results.sort(key=lambda x: x[3], reverse=True)
                tasks_results.sort(key=lambda x: x[3], reverse=True)
                notes_results.sort(key=lambda x: x[3], reverse=True)
                goals_results.sort(key=lambda x: x[3], reverse=True)
                ai_history_results.sort(key=lambda x: x[2], reverse=True)
            elif sort_by == "Date (Oldest First)":
                all_results.sort(key=lambda x: x[3])
                tasks_results.sort(key=lambda x: x[3])
                notes_results.sort(key=lambda x: x[3])
                goals_results.sort(key=lambda x: x[3])
                ai_history_results.sort(key=lambda x: x[2])
            
            # Generate related content
            related_content_data = generate_related_content(search_results)
            related_content_visible = len(related_content_data) > 0
            
            # Handle AI Q&A mode
            ai_answer_text = ""
            ai_sources_data = []
            
            if ai_qa_mode and query.strip().endswith("?"):
                # This is a question, generate an AI answer
                try:
                    # Get top sources for context
                    sources = []
                    for item, relevance in search_results[:5]:  # Use top 5 results as sources
                        if item.get("_type") == "note":
                            sources.append(item.get("content", ""))
                        elif item.get("_type") == "ai_history":
                            sources.append(item.get("response", ""))
                    
                    # Combine sources into context
                    context = "\n\n".join(sources)
                    
                    # Generate answer using question answering
                    from utils.ai_models import answer_question
                    ai_answer_text = answer_question(context, query)
                    
                    # Format sources for display
                    for i, (item, relevance) in enumerate(search_results[:5]):
                        source_type = item.get("_type", "unknown").capitalize()
                        source_title = item.get("title", f"{source_type} {i+1}")
                        source_content = ""
                        
                        if item.get("_type") == "note":
                            source_content = item.get("content", "")[:100] + "..." if len(item.get("content", "")) > 100 else item.get("content", "")
                        elif item.get("_type") == "ai_history":
                            source_content = item.get("response", "")[:100] + "..." if len(item.get("response", "")) > 100 else item.get("response", "")
                        
                        ai_sources_data.append([source_title, source_content, relevance])
                
                except Exception as e:
                    logger.error(f"AI Q&A generation failed: {str(e)}")
                    ai_answer_text = "Sorry, I couldn't generate an answer based on your content. Please try a different question."
            
            # Record search activity and update search history
            search_record = {
                "type": "search",
                "query": query,
                "content_types": content_types,
                "time_period": time_period,
                "results_count": len(all_results),
                "timestamp": get_timestamp()
            }
            
            record_activity(state, "Performed Search", search_record)
            
            # Update search history
            search_history = safe_get(state, "search_history", [])
            search_history.insert(0, {"query": query, "timestamp": get_timestamp()})
            if len(search_history) > 50:  # Limit history size
                search_history = search_history[:50]
            state["search_history"] = search_history
            
            return (
                all_results, 
                tasks_results, 
                notes_results, 
                goals_results, 
                ai_history_results,
                gr.update(visible=ai_qa_mode and query.strip().endswith("?")),  # ai_qa_group visibility
                ai_answer_text,  # ai_answer
                ai_sources_data,  # ai_sources
                gr.update(visible=related_content_visible),  # related_content_section visibility
                insights_html  # insights_html for the insights tab
            )
            
        # Helper function to format insights for display
        def format_insights(insights):
            """Format insights for display"""
            if not insights:
                return "<div class='no-results'>No insights available. Enable advanced features to see insights.</div>"
                
            html = "<div class='insights-container'>"
            
            # Knowledge Graph
            if "knowledge_graph" in insights:
                graph = insights["knowledge_graph"]
                html += "<div class='insight-section'>"
                html += "<h3>Knowledge Graph</h3>"
                html += "<p>Connections between your content:</p>"
                
                # Simple visualization of nodes and edges
                html += "<div class='knowledge-graph'>"
                html += "<h4>Nodes:</h4><ul>"
                for node in graph.get("nodes", [])[:10]:  # Limit to 10 nodes for display
                    html += f"<li>{node.get('label')} ({node.get('type')})</li>"
                html += "</ul>"
                
                html += "<h4>Connections:</h4><ul>"
                for edge in graph.get("edges", [])[:10]:  # Limit to 10 edges for display
                    html += f"<li>{edge.get('source')}{edge.get('target')} (strength: {edge.get('weight', 0):.2f})</li>"
                html += "</ul>"
                html += "</div></div>"
            
            # Content Clusters
            if "clusters" in insights:
                clusters = insights["clusters"]
                html += "<div class='insight-section'>"
                html += "<h3>Content Clusters</h3>"
                html += "<p>Your content organized by topic:</p>"
                
                html += "<div class='clusters'>"
                for cluster_name, items in clusters.items():
                    html += f"<div class='cluster'><h4>{cluster_name}</h4><ul>"
                    for item in items[:5]:  # Limit to 5 items per cluster
                        title = item.get("title", "Untitled")
                        item_type = item.get("type", "item")
                        html += f"<li>{title} ({item_type})</li>"
                    html += "</ul></div>"
                html += "</div></div>"
            
            # Potential Duplicates
            if "potential_duplicates" in insights:
                duplicates = insights["potential_duplicates"]
                html += "<div class='insight-section'>"
                html += "<h3>Potential Duplicates</h3>"
                
                if not duplicates:
                    html += "<p>No potential duplicates found.</p>"
                else:
                    html += "<p>Items that might be duplicates:</p>"
                    html += "<div class='duplicates'>"
                    for i, group in enumerate(duplicates[:3]):  # Limit to 3 duplicate groups
                        html += f"<div class='duplicate-group'><h4>Group {i+1}</h4><ul>"
                        for item in group:
                            title = item.get("title", "Untitled")
                            item_type = item.get("type", "item")
                            html += f"<li>{title} ({item_type})</li>"
                        html += "</ul></div>"
                    html += "</div>"
                html += "</div>"
            
            # Trends
            if "trends" in insights:
                trends = insights["trends"]
                html += "<div class='insight-section'>"
                html += "<h3>Content Trends</h3>"
                
                # Trending topics
                if "trending_topics" in trends:
                    html += "<h4>Trending Topics</h4><ul>"
                    trending_topics = trends["trending_topics"]
                    for month, topics in list(trending_topics.items())[:3]:  # Show last 3 months
                        html += f"<li>{month}: "
                        topic_str = ", ".join([f"{topic} ({count})" for topic, count in topics[:3]])
                        html += f"{topic_str}</li>"
                    html += "</ul>"
                
                # Growth rates
                if "growth_rates" in trends:
                    html += "<h4>Content Growth</h4><ul>"
                    growth_rates = trends["growth_rates"]
                    for month, rate in list(growth_rates.items())[:3]:  # Show last 3 months
                        html += f"<li>{month}: {rate:.1f}%</li>"
                    html += "</ul>"
                
                html += "</div>"
            
            # Information Gaps
            if "information_gaps" in insights:
                gaps = insights["information_gaps"]
                html += "<div class='insight-section'>"
                html += "<h3>Information Gaps</h3>"
                
                if not gaps:
                    html += "<p>No significant information gaps detected.</p>"
                else:
                    html += "<p>Areas that might need more content:</p><ul>"
                    for gap in gaps[:5]:  # Limit to 5 gaps
                        gap_type = gap.get("type", "")
                        if gap_type == "underdeveloped_topic":
                            html += f"<li>Limited content on: {gap.get('topic', 'Unknown')}</li>"
                        elif gap_type == "missing_connection":
                            topics = gap.get("topics", [])
                            html += f"<li>Missing connection between: {' and '.join(topics)}</li>"
                        else:
                            html += f"<li>{gap.get('description', 'Unknown gap')}</li>"
                    html += "</ul>"
                html += "</div>"
            
            html += "</div>"
            return html
        
        # Helper function to check if an item matches the search criteria with keywords
        def keyword_matches(item, query):
            """Check if an item matches the search query using keywords"""
            query_lower = query.lower()
            
            # Search in all string fields
            for key, value in item.items():
                if key.startswith("_"):  # Skip internal fields
                    continue
                    
                if isinstance(value, str) and query_lower in value.lower():
                    return True
                elif isinstance(value, list) and all(isinstance(x, str) for x in value):
                    # Search in list of strings (like tags)
                    for string_item in value:
                        if query_lower in string_item.lower():
                            return True
            
            return False
        
        # Helper function to check if an item matches the time period filter
        def matches_time_period(item, time_period):
            """Check if an item falls within the specified time period"""
            if time_period == "All Time":
                return True
            
            # Get the timestamp from the item
            timestamp = None
            for key in ["timestamp", "created_at", "date_created", "due_date", "target_date"]:
                if key in item and item[key]:
                    timestamp = item[key]
                    break
            
            if not timestamp:
                return False
            
            try:
                item_date = datetime.datetime.fromisoformat(timestamp)
                now = datetime.datetime.now()
                
                if time_period == "Today":
                    return item_date.date() == now.date()
                elif time_period == "This Week":
                    start_of_week = now - datetime.timedelta(days=now.weekday())
                    return start_of_week.date() <= item_date.date() <= now.date()
                elif time_period == "This Month":
                    return item_date.year == now.year and item_date.month == now.month
                elif time_period == "This Year":
                    return item_date.year == now.year
                elif time_period == "Custom Range":
                    # In a real implementation, this would use custom date range inputs
                    # For now, default to last 30 days
                    return now - datetime.timedelta(days=30) <= item_date <= now
                
                return True
            except:
                return False
        
        # Helper function to calculate relevance score
        def calculate_relevance(item, query):
            """Calculate a simple relevance score for an item based on the query"""
            query_lower = query.lower()
            score = 0
            
            for key, value in item.items():
                if key.startswith("_"):  # Skip internal fields
                    continue
                    
                if isinstance(value, str):
                    # Count occurrences of query in the value
                    occurrences = value.lower().count(query_lower)
                    
                    # Title and content fields are more important
                    if key in ["title", "content", "description"]:
                        score += occurrences * 2
                    else:
                        score += occurrences
                elif isinstance(value, list) and all(isinstance(x, str) for x in value):
                    # For lists of strings (like tags)
                    for string_item in value:
                        score += string_item.lower().count(query_lower)
            
            # Normalize score between 0 and 1
            return min(score / 10, 1.0)  # Cap at 1.0
        
        # Function to generate related content
        def generate_related_content(search_results):
            """Generate related content based on search results"""
            if not search_results or len(search_results) == 0:
                return []
            
            related_content = []
            seen_items = set()  # To avoid duplicates
            
            # Get top search results
            top_results = search_results[:3]
            
            for item, _ in top_results:
                item_type = item.get("_type", "unknown")
                item_id = f"{item_type}_{item.get('id', '')}"
                
                if item_id in seen_items:
                    continue
                    
                seen_items.add(item_id)
                
                # Find similar items
                similar_items = find_similar_items(item, search_results)
                
                for similar_item, similarity in similar_items:
                    similar_id = f"{similar_item.get('_type', 'unknown')}_{similar_item.get('id', '')}"
                    
                    if similar_id in seen_items:
                        continue
                        
                    seen_items.add(similar_id)
                    
                    # Format for display
                    item_type_display = similar_item.get("_type", "unknown").capitalize()
                    title = similar_item.get("title", f"{item_type_display} item")
                    
                    related_content.append([item_type_display, title, similarity])
            
            return related_content[:5]  # Limit to 5 items
        
        # Helper function to find similar items
        def find_similar_items(item, all_items):
            """Find items similar to the given item"""
            similar_items = []
            
            # Extract item features for comparison
            item_text = ""
            for key, value in item.items():
                if key.startswith("_") or key in ["id", "timestamp", "created_at"]:
                    continue
                    
                if isinstance(value, str):
                    item_text += value + " "
                elif isinstance(value, list) and all(isinstance(x, str) for x in value):
                    item_text += " ".join(value) + " "
            
            item_text = item_text.lower()
            
            # Compare with other items
            for other_item, relevance in all_items:
                # Skip the same item
                if other_item.get("id") == item.get("id") and other_item.get("_type") == item.get("_type"):
                    continue
                
                # Extract other item features
                other_text = ""
                for key, value in other_item.items():
                    if key.startswith("_") or key in ["id", "timestamp", "created_at"]:
                        continue
                        
                    if isinstance(value, str):
                        other_text += value + " "
                    elif isinstance(value, list) and all(isinstance(x, str) for x in value):
                        other_text += " ".join(value) + " "
                
                other_text = other_text.lower()
                
                # Calculate similarity (simple word overlap for now)
                item_words = set(item_text.split())
                other_words = set(other_text.split())
                
                if not item_words or not other_words:
                    continue
                    
                common_words = item_words.intersection(other_words)
                similarity = len(common_words) / max(len(item_words), len(other_words))
                
                if similarity > 0.1:  # Threshold for similarity
                    similar_items.append((other_item, similarity))
            
            # Sort by similarity
            similar_items.sort(key=lambda x: x[1], reverse=True)
            
            return similar_items[:3]  # Return top 3 similar items
        
        # Function to get saved searches
        def get_saved_searches(state):
            """Get saved searches from state"""
            saved_searches = safe_get(state, "saved_searches", [])
            
            # Format for display
            display_data = []
            for search in saved_searches:
                filters = f"Types: {', '.join(search.get('content_types', []))} | Period: {search.get('time_period', 'All Time')}"
                display_data.append([
                    search.get("name", "Unnamed Search"),
                    search.get("query", ""),
                    filters,
                    search.get("date_saved", "")
                ])
            
            return display_data
        
        # Function to save a search
        def save_search(name, query, content_types, time_period, sort_by, tags=None, status=None, priority=None, advanced_features=None):
            """Save a search configuration"""
            if not name.strip():
                return gr.update(value="Please enter a name for this search"), get_saved_searches(state)
            
            # Create search object
            search = {
                "name": name,
                "query": query,
                "content_types": content_types,
                "time_period": time_period,
                "sort_by": sort_by,
                "date_saved": get_timestamp(),
                "advanced_filters": {
                    "tags": tags if tags else [],
                    "status": status if status else "Any Status",
                    "priority": priority if priority else "Any Priority",
                    "advanced_features": advanced_features if advanced_features else []
                }
            }
            
            # Add to state
            saved_searches = safe_get(state, "saved_searches", [])
            saved_searches.append(search)
            state["saved_searches"] = saved_searches
            
            # Record activity
            record_activity(state, "Saved Search", {
                "search_name": name,
                "query": query
            })
            
            return gr.update(value=""), get_saved_searches(state)
        
        # Function to load a saved search
def load_saved_search(selected_row):
    """Load a saved search configuration"""
    if not selected_row or len(selected_row) == 0:
        return [gr.update()] * 10  # No updates if nothing selected
    
    # Get the selected search name
    search_name = selected_row[0][0]
    
    # Find the search in saved searches
    search = None
    for s in safe_get(state, "saved_searches", []):
        if s.get("name") == search_name:
            search = s
            break
    
    if not search:
        return [gr.update()] * 10
    
    # Extract advanced filters
    advanced_filters = search.get("advanced_filters", {})
    tags = advanced_filters.get("tags", [])
    status = advanced_filters.get("status", "Any Status")
    priority = advanced_filters.get("priority", "Any Priority")
    advanced_features = advanced_filters.get("advanced_features", [])
    
    # Return updates for all relevant components
    return [
        gr.update(value=search.get("query", "")),  # search_input
        gr.update(value=search.get("content_types", [])),  # content_types
        gr.update(value=search.get("time_period", "All Time")),  # time_period
        gr.update(value=search.get("sort_by", "Relevance")),  # sort_by
        gr.update(value=tags),  # tags_filter
        gr.update(value=status),  # status_filter
        gr.update(value=priority),  # priority_filter
        gr.update(value=advanced_features),  # advanced_features_checkboxes
        gr.update(value=search_name),  # saved_search_name
        gr.update()  # No update for saved_searches_list
    ]
        
        # Function to delete a saved search
        def delete_saved_search(selected_row):
            """Delete a saved search"""
            if not selected_row or len(selected_row) == 0:
                return get_saved_searches(state)
            
            # Get the selected search name
            search_name = selected_row[0][0]
            
            # Remove from state
            saved_searches = safe_get(state, "saved_searches", [])
            state["saved_searches"] = [s for s in saved_searches if s.get("name") != search_name]
            
            return get_saved_searches(state)
        
        # Set up search input to generate suggestions
        search_input.change(
            generate_suggestions,
            inputs=[search_input],
            outputs=[search_suggestions]
        )
        
        # Connect the search button
        search_btn.click(
            semantic_search,
            inputs=[
                search_input, 
                content_types, 
                time_period, 
                sort_by, 
                ai_qa_toggle,
                tags_filter,
                status_filter,
                priority_filter,
                advanced_features_checkboxes
            ],
            outputs=[
                all_results, 
                task_results, 
                note_results, 
                goal_results, 
                ai_results,
                ai_qa_group,
                ai_answer,
                ai_sources,
                related_content_section,
                insights_tab
            ]
        )
        
        # Connect the save search button
        save_search_btn.click(
            lambda: gr.update(visible=True),
            inputs=[],
            outputs=[saved_search_name]
        )
        
        # Connect the save current search button
        save_current_search_btn.click(
            save_search,
            inputs=[
                saved_search_name,
                search_input,
                content_types,
                time_period,
                sort_by,
                tags_filter,
                status_filter,
                priority_filter,
                advanced_features_checkboxes
            ],
            outputs=[
                saved_search_name,
                saved_searches_list
            ]
        )
        
        # Connect the load saved search button
        load_saved_search_btn.click(
            load_saved_search,
            inputs=[saved_searches_list],
            outputs=[
                search_input,
                content_types,
                time_period,
                sort_by,
                tags_filter,
                status_filter,
                priority_filter,
                advanced_features_checkboxes,
                saved_search_name,
                saved_searches_list
            ]
        )
        
        # Connect the delete saved search button
        delete_saved_search_btn.click(
            delete_saved_search,
            inputs=[saved_searches_list],
            outputs=[saved_searches_list]
        )
        
        # Toggle AI Q&A group visibility
        ai_qa_toggle.change(
            lambda value: gr.update(visible=value),
            inputs=[ai_qa_toggle],
            outputs=[ai_qa_group]
        )
        
        # Record page visit in activity
        record_activity(state, "Viewed Smart Search Page")