File size: 33,602 Bytes
8e4018d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import datetime
from typing import Dict, List, Any, Union, Optional, Tuple
import calendar
from collections import Counter, defaultdict

from utils.logging import setup_logger
from utils.error_handling import handle_exceptions
from utils.storage import load_data, safe_get
from utils.config import FILE_PATHS, UI_COLORS

# Initialize logger
logger = setup_logger(__name__)

@handle_exceptions
def filter_data_by_time_period(data: List[Dict[str, Any]], time_period: str, timestamp_key: str = "created_at") -> List[Dict[str, Any]]:
    """
    Filter data based on the selected time period
    
    Args:
        data: List of data items (tasks, notes, goals, etc.)
        time_period: Time period to filter by ("Last 7 Days", "Last 30 Days", "Last 90 Days", "All Time")
        timestamp_key: Key in the data items that contains the timestamp
        
    Returns:
        Filtered data items
    """
    logger.debug(f"Filtering data by time period: {time_period}")
    
    if time_period == "All Time" or not data:
        return data
    
    now = datetime.datetime.now()
    
    if time_period == "Last 7 Days":
        cutoff = now - datetime.timedelta(days=7)
    elif time_period == "Last 30 Days":
        cutoff = now - datetime.timedelta(days=30)
    elif time_period == "Last 90 Days":
        cutoff = now - datetime.timedelta(days=90)
    else:
        logger.warning(f"Unknown time period: {time_period}, returning all data")
        return data
    
    # Convert cutoff to timestamp if the data timestamps are stored as timestamps
    cutoff_timestamp = cutoff.timestamp()
    
    filtered_data = []
    for item in data:
        item_timestamp = item.get(timestamp_key)
        if not item_timestamp:
            continue
            
        # Handle both datetime string and timestamp formats
        if isinstance(item_timestamp, str):
            try:
                item_datetime = datetime.datetime.fromisoformat(item_timestamp.replace('Z', '+00:00'))
                item_timestamp = item_datetime.timestamp()
            except ValueError:
                logger.warning(f"Could not parse timestamp: {item_timestamp}")
                continue
                
        if item_timestamp >= cutoff_timestamp:
            filtered_data.append(item)
    
    logger.debug(f"Filtered data from {len(data)} to {len(filtered_data)} items")
    return filtered_data

@handle_exceptions
def create_completion_rate_chart(data: List[Dict[str, Any]], title: str = "Completion Rate", 
                               completed_key: str = "completed") -> go.Figure:
    """
    Create a pie chart showing completion rate
    
    Args:
        data: List of data items (tasks, goals, etc.)
        title: Chart title
        completed_key: Key in the data items that indicates completion status
        
    Returns:
        Plotly figure object
    """
    logger.debug(f"Creating completion rate chart with {len(data)} items")
    
    # Count completed and incomplete items
    completed = sum(1 for item in data if safe_get(item, completed_key, False))
    incomplete = len(data) - completed
    
    # Calculate percentages
    if data:
        completed_pct = completed / len(data) * 100
        incomplete_pct = 100 - completed_pct
    else:
        completed_pct = 0
        incomplete_pct = 0
    
    # Create labels with percentages
    labels = [f"Completed ({completed_pct:.1f}%)", f"Incomplete ({incomplete_pct:.1f}%)"]
    values = [completed, incomplete]
    
    # Create pie chart
    fig = go.Figure(data=[go.Pie(
        labels=labels,
        values=values,
        hole=0.4,
        marker_colors=[UI_COLORS["success"], UI_COLORS["warning"]]
    )])
    
    fig.update_layout(
        title=title,
        showlegend=True,
        legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5),
        margin=dict(l=20, r=20, t=40, b=20),
        height=300
    )
    
    return fig

@handle_exceptions
def create_status_distribution_chart(tasks: List[Dict[str, Any]], title: str = "Task Status Distribution") -> go.Figure:
    """
    Create a bar chart showing the distribution of task statuses
    
    Args:
        tasks: List of task items
        title: Chart title
        
    Returns:
        Plotly figure object
    """
    logger.debug(f"Creating status distribution chart with {len(tasks)} tasks")
    
    # Count tasks by status
    status_counts = Counter(safe_get(task, "status", "To Do") for task in tasks)
    
    # Define status order and colors
    status_order = ["To Do", "In Progress", "Done"]
    status_colors = [UI_COLORS["warning"], UI_COLORS["info"], UI_COLORS["success"]]
    
    # Filter and sort statuses
    statuses = []
    counts = []
    colors = []
    
    for status in status_order:
        if status in status_counts:
            statuses.append(status)
            counts.append(status_counts[status])
            colors.append(status_colors[status_order.index(status)])
    
    # Add any other statuses not in the predefined order
    for status, count in status_counts.items():
        if status not in status_order:
            statuses.append(status)
            counts.append(count)
            colors.append(UI_COLORS["secondary"])
    
    # Create bar chart
    fig = go.Figure(data=[go.Bar(
        x=statuses,
        y=counts,
        marker_color=colors,
        text=counts,
        textposition='auto',
    )])
    
    fig.update_layout(
        title=title,
        xaxis_title="Status",
        yaxis_title="Number of Tasks",
        margin=dict(l=20, r=20, t=40, b=20),
        height=300
    )
    
    return fig

@handle_exceptions
def create_priority_distribution_chart(tasks: List[Dict[str, Any]], title: str = "Task Priority Distribution") -> go.Figure:
    """
    Create a bar chart showing the distribution of task priorities
    
    Args:
        tasks: List of task items
        title: Chart title
        
    Returns:
        Plotly figure object
    """
    logger.debug(f"Creating priority distribution chart with {len(tasks)} tasks")
    
    # Count tasks by priority
    priority_counts = Counter(safe_get(task, "priority", "Medium") for task in tasks)
    
    # Define priority order and colors
    priority_order = ["Low", "Medium", "High", "Urgent"]
    priority_colors = [UI_COLORS["success"], UI_COLORS["info"], UI_COLORS["warning"], UI_COLORS["danger"]]
    
    # Filter and sort priorities
    priorities = []
    counts = []
    colors = []
    
    for priority in priority_order:
        if priority in priority_counts:
            priorities.append(priority)
            counts.append(priority_counts[priority])
            colors.append(priority_colors[priority_order.index(priority)])
    
    # Add any other priorities not in the predefined order
    for priority, count in priority_counts.items():
        if priority not in priority_order:
            priorities.append(priority)
            counts.append(count)
            colors.append(UI_COLORS["secondary"])
    
    # Create bar chart
    fig = go.Figure(data=[go.Bar(
        x=priorities,
        y=counts,
        marker_color=colors,
        text=counts,
        textposition='auto',
    )])
    
    fig.update_layout(
        title=title,
        xaxis_title="Priority",
        yaxis_title="Number of Tasks",
        margin=dict(l=20, r=20, t=40, b=20),
        height=300
    )
    
    return fig

@handle_exceptions
def create_time_series_chart(data: List[Dict[str, Any]], title: str = "Activity Over Time", 
                            timestamp_key: str = "created_at", group_by: str = "day") -> go.Figure:
    """
    Create a time series chart showing activity over time
    
    Args:
        data: List of data items (tasks, notes, goals, activity, etc.)
        title: Chart title
        timestamp_key: Key in the data items that contains the timestamp
        group_by: Time grouping ("day", "week", "month")
        
    Returns:
        Plotly figure object
    """
    logger.debug(f"Creating time series chart with {len(data)} items, grouped by {group_by}")
    
    if not data:
        # Return empty chart if no data
        fig = go.Figure()
        fig.update_layout(title=title, height=300)
        return fig
    
    # Convert timestamps to datetime objects
    dates = []
    for item in data:
        timestamp = item.get(timestamp_key)
        if not timestamp:
            continue
            
        # Handle both datetime string and timestamp formats
        if isinstance(timestamp, str):
            try:
                date = datetime.datetime.fromisoformat(timestamp.replace('Z', '+00:00'))
            except ValueError:
                logger.warning(f"Could not parse timestamp: {timestamp}")
                continue
        else:
            date = datetime.datetime.fromtimestamp(timestamp)
            
        dates.append(date)
    
    if not dates:
        # Return empty chart if no valid dates
        fig = go.Figure()
        fig.update_layout(title=title, height=300)
        return fig
    
    # Group dates by the specified time period
    date_counts = defaultdict(int)
    
    for date in dates:
        if group_by == "day":
            key = date.strftime("%Y-%m-%d")
        elif group_by == "week":
            # Get the start of the week (Monday)
            start_of_week = date - datetime.timedelta(days=date.weekday())
            key = start_of_week.strftime("%Y-%m-%d")
        elif group_by == "month":
            key = date.strftime("%Y-%m")
        else:
            logger.warning(f"Unknown group_by value: {group_by}, using day")
            key = date.strftime("%Y-%m-%d")
            
        date_counts[key] += 1
    
    # Sort dates
    sorted_dates = sorted(date_counts.keys())
    counts = [date_counts[date] for date in sorted_dates]
    
    # Format x-axis labels based on grouping
    if group_by == "day":
        x_labels = [datetime.datetime.strptime(d, "%Y-%m-%d").strftime("%b %d") for d in sorted_dates]
    elif group_by == "week":
        x_labels = [f"Week of {datetime.datetime.strptime(d, '%Y-%m-%d').strftime('%b %d')}" for d in sorted_dates]
    elif group_by == "month":
        x_labels = [datetime.datetime.strptime(d, "%Y-%m").strftime("%b %Y") for d in sorted_dates]
    else:
        x_labels = sorted_dates
    
    # Create line chart
    fig = go.Figure(data=go.Scatter(
        x=x_labels,
        y=counts,
        mode='lines+markers',
        line=dict(color=UI_COLORS["primary"], width=2),
        marker=dict(size=8, color=UI_COLORS["primary"]),
        fill='tozeroy',
        fillcolor=f"rgba({int(UI_COLORS['primary'][1:3], 16)}, {int(UI_COLORS['primary'][3:5], 16)}, {int(UI_COLORS['primary'][5:7], 16)}, 0.2)"
    ))
    
    fig.update_layout(
        title=title,
        xaxis_title="Date",
        yaxis_title="Count",
        margin=dict(l=20, r=20, t=40, b=20),
        height=300
    )
    
    return fig

@handle_exceptions
def create_activity_heatmap(data: List[Dict[str, Any]], title: str = "Activity Heatmap", 
                          timestamp_key: str = "created_at") -> go.Figure:
    """
    Create a heatmap showing activity by day of week and hour of day
    
    Args:
        data: List of data items (tasks, notes, goals, activity, etc.)
        title: Chart title
        timestamp_key: Key in the data items that contains the timestamp
        
    Returns:
        Plotly figure object
    """
    logger.debug(f"Creating activity heatmap with {len(data)} items")
    
    if not data:
        # Return empty chart if no data
        fig = go.Figure()
        fig.update_layout(title=title, height=400)
        return fig
    
    # Convert timestamps to datetime objects and extract day of week and hour
    day_hour_counts = np.zeros((7, 24))  # 7 days, 24 hours
    
    for item in data:
        timestamp = item.get(timestamp_key)
        if not timestamp:
            continue
            
        # Handle both datetime string and timestamp formats
        if isinstance(timestamp, str):
            try:
                date = datetime.datetime.fromisoformat(timestamp.replace('Z', '+00:00'))
            except ValueError:
                logger.warning(f"Could not parse timestamp: {timestamp}")
                continue
        else:
            date = datetime.datetime.fromtimestamp(timestamp)
            
        # Get day of week (0 = Monday, 6 = Sunday) and hour
        day_of_week = date.weekday()
        hour = date.hour
        
        # Increment count for this day and hour
        day_hour_counts[day_of_week, hour] += 1
    
    # Create day and hour labels
    days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
    hours = [f"{h:02d}:00" for h in range(24)]
    
    # Create heatmap
    fig = go.Figure(data=go.Heatmap(
        z=day_hour_counts,
        x=hours,
        y=days,
        colorscale='Viridis',
        hoverongaps=False,
        colorbar=dict(title="Count")
    ))
    
    fig.update_layout(
        title=title,
        xaxis_title="Hour of Day",
        yaxis_title="Day of Week",
        margin=dict(l=20, r=20, t=40, b=20),
        height=400
    )
    
    return fig

@handle_exceptions
def create_calendar_heatmap(data: List[Dict[str, Any]], title: str = "Calendar Heatmap", 
                           timestamp_key: str = "created_at", year: Optional[int] = None) -> go.Figure:
    """
    Create a calendar heatmap showing activity by day of year
    
    Args:
        data: List of data items (tasks, notes, goals, activity, etc.)
        title: Chart title
        timestamp_key: Key in the data items that contains the timestamp
        year: Year to display (defaults to current year)
        
    Returns:
        Plotly figure object
    """
    logger.debug(f"Creating calendar heatmap with {len(data)} items")
    
    if not data:
        # Return empty chart if no data
        fig = go.Figure()
        fig.update_layout(title=title, height=500)
        return fig
    
    # Use current year if not specified
    if year is None:
        year = datetime.datetime.now().year
    
    # Convert timestamps to datetime objects and count activities by date
    date_counts = defaultdict(int)
    
    for item in data:
        timestamp = item.get(timestamp_key)
        if not timestamp:
            continue
            
        # Handle both datetime string and timestamp formats
        if isinstance(timestamp, str):
            try:
                date = datetime.datetime.fromisoformat(timestamp.replace('Z', '+00:00'))
            except ValueError:
                logger.warning(f"Could not parse timestamp: {timestamp}")
                continue
        else:
            date = datetime.datetime.fromtimestamp(timestamp)
            
        # Only include dates from the specified year
        if date.year == year:
            date_key = date.strftime("%Y-%m-%d")
            date_counts[date_key] += 1
    
    # Create a DataFrame with all days of the year
    start_date = datetime.date(year, 1, 1)
    end_date = datetime.date(year, 12, 31)
    all_dates = [start_date + datetime.timedelta(days=i) for i in range((end_date - start_date).days + 1)]
    
    dates = [d.strftime("%Y-%m-%d") for d in all_dates]
    counts = [date_counts.get(d, 0) for d in dates]
    weekdays = [d.weekday() for d in all_dates]  # 0 = Monday, 6 = Sunday
    months = [d.month for d in all_dates]
    days = [d.day for d in all_dates]
    
    # Create a DataFrame for plotting
    df = pd.DataFrame({
        'date': dates,
        'count': counts,
        'weekday': weekdays,
        'month': months,
        'day': days
    })
    
    # Create a custom calendar layout
    # We'll create a subplot for each month
    fig = make_subplots(rows=4, cols=3, subplot_titles=[calendar.month_name[i] for i in range(1, 13)])
    
    # Define color scale
    max_count = max(counts) if counts else 1
    colorscale = px.colors.sequential.Viridis
    
    # Add data for each month
    for month in range(1, 13):
        month_data = df[df['month'] == month]
        
        # Create a 7x6 grid for each month (7 days per week, up to 6 weeks per month)
        month_grid = np.zeros((7, 6))
        month_grid.fill(np.nan)  # Fill with NaN to hide empty cells
        
        # Get the first day of the month and its weekday
        first_day = month_data.iloc[0]
        first_weekday = first_day['weekday']
        
        # Fill the grid with activity counts
        for _, row in month_data.iterrows():
            day = row['day'] - 1  # 0-indexed day
            weekday = row['weekday']  # 0 = Monday, 6 = Sunday
            week = (day + first_weekday) // 7
            if week < 6:  # Only show up to 6 weeks
                month_grid[weekday, week] = row['count']
        
        # Add heatmap for this month
        row_idx = (month - 1) // 3 + 1
        col_idx = (month - 1) % 3 + 1
        
        fig.add_trace(
            go.Heatmap(
                z=month_grid,
                x=list(range(6)),  # Weeks
                y=['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'],  # Days
                colorscale=colorscale,
                showscale=month == 12,  # Only show colorbar for December
                zmin=0,
                zmax=max_count
            ),
            row=row_idx,
            col=col_idx
        )
    
    # Update layout
    fig.update_layout(
        title=title,
        height=800,
        margin=dict(l=20, r=20, t=40, b=20),
    )
    
    # Hide x-axis labels and ticks
    fig.update_xaxes(showticklabels=False, showgrid=False)
    
    return fig

@handle_exceptions
def create_tags_distribution_chart(data: List[Dict[str, Any]], title: str = "Tags Distribution", 
                                  tags_key: str = "tags", top_n: int = 10) -> go.Figure:
    """
    Create a bar chart showing the distribution of tags
    
    Args:
        data: List of data items (tasks, notes, goals, etc.)
        title: Chart title
        tags_key: Key in the data items that contains the tags
        top_n: Number of top tags to display
        
    Returns:
        Plotly figure object
    """
    logger.debug(f"Creating tags distribution chart with {len(data)} items")
    
    # Extract all tags
    all_tags = []
    for item in data:
        tags = safe_get(item, tags_key, [])
        if tags and isinstance(tags, list):
            all_tags.extend(tags)
    
    if not all_tags:
        # Return empty chart if no tags
        fig = go.Figure()
        fig.update_layout(title=title, height=300)
        return fig
    
    # Count tags
    tag_counts = Counter(all_tags)
    
    # Get top N tags
    top_tags = tag_counts.most_common(top_n)
    tags = [tag for tag, _ in top_tags]
    counts = [count for _, count in top_tags]
    
    # Create bar chart
    fig = go.Figure(data=[go.Bar(
        x=tags,
        y=counts,
        marker_color=UI_COLORS["primary"],
        text=counts,
        textposition='auto',
    )])
    
    fig.update_layout(
        title=title,
        xaxis_title="Tag",
        yaxis_title="Count",
        margin=dict(l=20, r=20, t=40, b=20),
        height=300
    )
    
    return fig

@handle_exceptions
def create_sentiment_chart(notes: List[Dict[str, Any]], title: str = "Notes Sentiment Analysis", 
                          content_key: str = "content", timestamp_key: str = "created_at") -> go.Figure:
    """
    Create a line chart showing sentiment analysis of notes over time
    
    Args:
        notes: List of note items
        title: Chart title
        content_key: Key in the note items that contains the content
        timestamp_key: Key in the note items that contains the timestamp
        
    Returns:
        Plotly figure object
    """
    logger.debug(f"Creating sentiment chart with {len(notes)} notes")
    
    if not notes:
        # Return empty chart if no notes
        fig = go.Figure()
        fig.update_layout(title=title, height=300)
        return fig
    
    # Sort notes by timestamp
    sorted_notes = sorted(notes, key=lambda x: safe_get(x, timestamp_key, 0))
    
    # Analyze sentiment for each note
    dates = []
    sentiments = []
    texts = []
    
    for note in sorted_notes:
        content = safe_get(note, content_key, "")
        timestamp = safe_get(note, timestamp_key, None)
        title_text = safe_get(note, "title", "Untitled Note")
        
        if not content or not timestamp:
            continue
        
        # Analyze sentiment (returns a value between -1 and 1)
        try:
            from utils.ai_models import analyze_sentiment
            sentiment = analyze_sentiment(content)
        except Exception as e:
            logger.warning(f"Error analyzing sentiment: {str(e)}")
            # Use a random sentiment between -0.5 and 0.5 as fallback
            sentiment = (np.random.random() - 0.5)
        
        # Convert timestamp to datetime
        if isinstance(timestamp, str):
            try:
                date = datetime.datetime.fromisoformat(timestamp.replace('Z', '+00:00'))
            except ValueError:
                logger.warning(f"Could not parse timestamp: {timestamp}")
                continue
        else:
            date = datetime.datetime.fromtimestamp(timestamp)
        
        dates.append(date.strftime("%Y-%m-%d"))
        sentiments.append(sentiment)
        texts.append(f"<b>{title_text}</b><br>{content[:100]}..." if len(content) > 100 else f"<b>{title_text}</b><br>{content}")
    
    if not dates:
        # Return empty chart if no valid notes
        fig = go.Figure()
        fig.update_layout(title=title, height=300)
        return fig
    
    # Create line chart
    fig = go.Figure(data=go.Scatter(
        x=dates,
        y=sentiments,
        mode='lines+markers',
        line=dict(color=UI_COLORS["primary"], width=2),
        marker=dict(
            size=10,
            color=sentiments,
            colorscale=[[0, UI_COLORS["danger"]], [0.5, UI_COLORS["warning"]], [1, UI_COLORS["success"]]],
            cmin=-1,
            cmax=1,
            showscale=True,
            colorbar=dict(title="Sentiment")
        ),
        text=texts,
        hoverinfo="text+x+y"
    ))
    
    fig.update_layout(
        title=title,
        xaxis_title="Date",
        yaxis_title="Sentiment Score",
        yaxis=dict(range=[-1, 1]),
        margin=dict(l=20, r=20, t=40, b=20),
        height=400
    )
    
    # Add a horizontal line at y=0
    fig.add_shape(
        type="line",
        x0=dates[0],
        y0=0,
        x1=dates[-1],
        y1=0,
        line=dict(color="gray", width=1, dash="dash")
    )
    
    return fig

@handle_exceptions
def create_model_usage_distribution(activities: List[Dict[str, Any]], title: str = "AI Model Usage Distribution") -> go.Figure:
    """
    Create a pie chart showing the distribution of AI model usage
    
    Args:
        activities: List of activity items
        title: Chart title
        
    Returns:
        Plotly figure object
    """
    logger.debug(f"Creating model usage distribution chart with {len(activities)} activities")
    
    # Filter activities related to AI model usage
    ai_activities = []
    for activity in activities:
        activity_type = safe_get(activity, "type", "")
        if "ai_" in activity_type or "model_" in activity_type:
            ai_activities.append(activity)
    
    if not ai_activities:
        # Return empty chart if no AI activities
        fig = go.Figure()
        fig.update_layout(title=title, height=300)
        return fig
    
    # Count model usage by type
    model_counts = defaultdict(int)
    for activity in ai_activities:
        activity_type = safe_get(activity, "type", "unknown")
        # Clean up the activity type for better display
        model_type = activity_type.replace("ai_", "").replace("model_", "").replace("_", " ").title()
        model_counts[model_type] += 1
    
    # Prepare data for pie chart
    models = list(model_counts.keys())
    counts = list(model_counts.values())
    
    # Create color map for models
    colors = px.colors.qualitative.Plotly[:len(models)] if len(models) <= 10 else px.colors.qualitative.Alphabet
    
    # Create pie chart
    fig = go.Figure(data=[go.Pie(
        labels=models,
        values=counts,
        hole=0.4,
        marker=dict(colors=colors),
        textinfo="label+percent",
        insidetextorientation="radial"
    )])
    
    fig.update_layout(
        title=title,
        margin=dict(l=20, r=20, t=40, b=20),
        height=300,
        legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5)
    )
    
    return fig

@handle_exceptions
def create_model_usage_over_time(activities: List[Dict[str, Any]], title: str = "AI Model Usage Over Time",
                                timestamp_key: str = "timestamp", group_by: str = "day") -> go.Figure:
    """
    Create a stacked area chart showing AI model usage over time
    
    Args:
        activities: List of activity items
        title: Chart title
        timestamp_key: Key in the activity items that contains the timestamp
        group_by: Time grouping ("day", "week", "month")
        
    Returns:
        Plotly figure object
    """
    logger.debug(f"Creating model usage over time chart with {len(activities)} activities")
    
    # Filter activities related to AI model usage
    ai_activities = []
    for activity in activities:
        activity_type = safe_get(activity, "type", "")
        if "ai_" in activity_type or "model_" in activity_type:
            ai_activities.append(activity)
    
    if not ai_activities:
        # Return empty chart if no AI activities
        fig = go.Figure()
        fig.update_layout(title=title, height=400)
        return fig
    
    # Group activities by date and model type
    date_model_counts = defaultdict(lambda: defaultdict(int))
    model_types = set()
    
    for activity in ai_activities:
        timestamp = safe_get(activity, timestamp_key, None)
        if not timestamp:
            continue
            
        # Convert timestamp to datetime
        if isinstance(timestamp, str):
            try:
                date = datetime.datetime.fromisoformat(timestamp.replace('Z', '+00:00'))
            except ValueError:
                logger.warning(f"Could not parse timestamp: {timestamp}")
                continue
        else:
            date = datetime.datetime.fromtimestamp(timestamp)
        
        # Group by the specified time period
        if group_by == "day":
            date_key = date.strftime("%Y-%m-%d")
        elif group_by == "week":
            # Get the start of the week (Monday)
            start_of_week = date - datetime.timedelta(days=date.weekday())
            date_key = start_of_week.strftime("%Y-%m-%d")
        elif group_by == "month":
            date_key = date.strftime("%Y-%m")
        else:
            logger.warning(f"Unknown group_by value: {group_by}, using day")
            date_key = date.strftime("%Y-%m-%d")
        
        # Clean up the activity type for better display
        activity_type = safe_get(activity, "type", "unknown")
        model_type = activity_type.replace("ai_", "").replace("model_", "").replace("_", " ").title()
        model_types.add(model_type)
        
        # Increment count for this date and model type
        date_model_counts[date_key][model_type] += 1
    
    if not date_model_counts:
        # Return empty chart if no valid activities
        fig = go.Figure()
        fig.update_layout(title=title, height=400)
        return fig
    
    # Sort dates
    sorted_dates = sorted(date_model_counts.keys())
    
    # Format x-axis labels based on grouping
    if group_by == "day":
        x_labels = [datetime.datetime.strptime(d, "%Y-%m-%d").strftime("%b %d") for d in sorted_dates]
    elif group_by == "week":
        x_labels = [f"Week of {datetime.datetime.strptime(d, '%Y-%m-%d').strftime('%b %d')}" for d in sorted_dates]
    elif group_by == "month":
        x_labels = [datetime.datetime.strptime(d, "%Y-%m").strftime("%b %Y") for d in sorted_dates]
    else:
        x_labels = sorted_dates
    
    # Convert model types to a sorted list
    model_types = sorted(model_types)
    
    # Create color map for models
    colors = px.colors.qualitative.Plotly[:len(model_types)] if len(model_types) <= 10 else px.colors.qualitative.Alphabet
    
    # Create stacked area chart
    fig = go.Figure()
    
    for i, model_type in enumerate(model_types):
        y_values = [date_model_counts[date].get(model_type, 0) for date in sorted_dates]
        
        fig.add_trace(go.Scatter(
            x=x_labels,
            y=y_values,
            mode='lines',
            stackgroup='one',  # This makes it a stacked area chart
            name=model_type,
            line=dict(width=0.5, color=colors[i % len(colors)]),
            fillcolor=colors[i % len(colors)]
        ))
    
    fig.update_layout(
        title=title,
        xaxis_title="Date",
        yaxis_title="Usage Count",
        margin=dict(l=20, r=20, t=40, b=20),
        height=400,
        legend=dict(orientation="h", yanchor="bottom", y=-0.3, xanchor="center", x=0.5)
    )
    
    return fig

@handle_exceptions
def create_completion_time_chart(data: List[Dict[str, Any]], title: str = "Completion Time Distribution",
                                created_key: str = "created_at", completed_key: str = "completed_at") -> go.Figure:
    """
    Create a histogram showing the distribution of completion times
    
    Args:
        data: List of data items (tasks, goals, etc.)
        title: Chart title
        created_key: Key in the data items that contains the creation timestamp
        completed_key: Key in the data items that contains the completion timestamp
        
    Returns:
        Plotly figure object
    """
    logger.debug(f"Creating completion time chart with {len(data)} items")
    
    # Filter completed items
    completed_items = []
    for item in data:
        created_at = safe_get(item, created_key, None)
        completed_at = safe_get(item, completed_key, None)
        
        if not created_at or not completed_at:
            continue
            
        # Convert timestamps to datetime objects
        if isinstance(created_at, str):
            try:
                created_date = datetime.datetime.fromisoformat(created_at.replace('Z', '+00:00'))
            except ValueError:
                logger.warning(f"Could not parse timestamp: {created_at}")
                continue
        else:
            created_date = datetime.datetime.fromtimestamp(created_at)
            
        if isinstance(completed_at, str):
            try:
                completed_date = datetime.datetime.fromisoformat(completed_at.replace('Z', '+00:00'))
            except ValueError:
                logger.warning(f"Could not parse timestamp: {completed_at}")
                continue
        else:
            completed_date = datetime.datetime.fromtimestamp(completed_at)
        
        # Calculate completion time in days
        completion_time = (completed_date - created_date).total_seconds() / (60 * 60 * 24)  # Convert to days
        
        # Only include positive completion times
        if completion_time > 0:
            completed_items.append({
                "item": item,
                "completion_time": completion_time
            })
    
    if not completed_items:
        # Return empty chart if no completed items
        fig = go.Figure()
        fig.update_layout(title=title, height=300)
        return fig
    
    # Extract completion times
    completion_times = [item["completion_time"] for item in completed_items]
    
    # Create histogram
    fig = go.Figure(data=go.Histogram(
        x=completion_times,
        nbinsx=20,
        marker_color=UI_COLORS["primary"],
        opacity=0.7
    ))
    
    # Calculate statistics
    avg_time = np.mean(completion_times)
    median_time = np.median(completion_times)
    
    # Add vertical lines for average and median
    fig.add_shape(
        type="line",
        x0=avg_time,
        y0=0,
        x1=avg_time,
        y1=1,
        yref="paper",
        line=dict(color=UI_COLORS["success"], width=2, dash="dash"),
    )
    
    fig.add_shape(
        type="line",
        x0=median_time,
        y0=0,
        x1=median_time,
        y1=1,
        yref="paper",
        line=dict(color=UI_COLORS["warning"], width=2, dash="dash"),
    )
    
    # Add annotations for average and median
    fig.add_annotation(
        x=avg_time,
        y=0.95,
        yref="paper",
        text=f"Average: {avg_time:.1f} days",
        showarrow=True,
        arrowhead=1,
        ax=40,
        ay=-40,
        bgcolor=UI_COLORS["success"],
        font=dict(color="white")
    )
    
    fig.add_annotation(
        x=median_time,
        y=0.85,
        yref="paper",
        text=f"Median: {median_time:.1f} days",
        showarrow=True,
        arrowhead=1,
        ax=-40,
        ay=-40,
        bgcolor=UI_COLORS["warning"],
        font=dict(color="white")
    )
    
    fig.update_layout(
        title=title,
        xaxis_title="Completion Time (days)",
        yaxis_title="Count",
        margin=dict(l=20, r=20, t=40, b=20),
        height=300
    )
    
    return fig