File size: 20,871 Bytes
8e4018d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
import numpy as np
from typing import List, Dict, Any, Tuple, Optional
import torch
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import re
from collections import defaultdict
from utils.logging import setup_logger
from utils.error_handling import handle_exceptions, AIModelError
# Initialize logger
logger = setup_logger(__name__)
# Global model cache
MODEL_CACHE = {}
def get_embedding_model():
"""Load and cache the sentence embedding model"""
model_name = "all-MiniLM-L6-v2" # A good balance of performance and speed
if model_name not in MODEL_CACHE:
logger.info(f"Loading embedding model: {model_name}")
try:
# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SentenceTransformer(model_name, device=device)
MODEL_CACHE[model_name] = model
logger.info(f"Embedding model loaded successfully on {device}")
except Exception as e:
logger.error(f"Error loading embedding model: {str(e)}")
raise AIModelError(f"Error loading embedding model", {"original_error": str(e)}) from e
return MODEL_CACHE[model_name]
def extract_text_from_item(item: Dict[str, Any]) -> str:
"""Extract searchable text from an item"""
text_parts = []
# Extract title and content
if "title" in item and item["title"]:
text_parts.append(item["title"])
if "content" in item and item["content"]:
text_parts.append(item["content"])
# Extract description if available
if "description" in item and item["description"]:
text_parts.append(item["description"])
# Extract tags if available
if "tags" in item and item["tags"]:
if isinstance(item["tags"], list):
text_parts.append(" ".join(item["tags"]))
elif isinstance(item["tags"], str):
text_parts.append(item["tags"])
# Join all parts with spaces
return " ".join(text_parts)
def get_item_embeddings(items: List[Dict[str, Any]]) -> Tuple[np.ndarray, List[Dict[str, Any]]]:
"""Get embeddings for a list of items"""
model = get_embedding_model()
texts = []
valid_items = []
for item in items:
text = extract_text_from_item(item)
if text.strip(): # Only include items with non-empty text
texts.append(text)
valid_items.append(item)
if not texts:
return np.array([]), []
try:
embeddings = model.encode(texts, convert_to_numpy=True)
return embeddings, valid_items
except Exception as e:
logger.error(f"Error generating embeddings: {str(e)}")
return np.array([]), []
def search_content(query: str, items: List[Dict[str, Any]], top_k: int = 10) -> List[Dict[str, Any]]:
"""Search content using semantic search with fallback to keyword search
Args:
query: Search query
items: List of items to search
top_k: Number of top results to return
Returns:
List of items sorted by relevance
"""
if not query or not items:
return []
logger.info(f"Performing semantic search for query: {query}")
try:
# Get embeddings for items
item_embeddings, valid_items = get_item_embeddings(items)
if len(valid_items) == 0:
logger.warning("No valid items with text content found")
return []
# Get embedding for query
model = get_embedding_model()
query_embedding = model.encode([query], convert_to_numpy=True)
# Calculate similarity scores
similarity_scores = cosine_similarity(query_embedding, item_embeddings)[0]
# Create result items with scores
results = []
for i, (item, score) in enumerate(zip(valid_items, similarity_scores)):
item_copy = item.copy()
item_copy["relevance_score"] = float(score)
results.append(item_copy)
# Sort by relevance score
results.sort(key=lambda x: x["relevance_score"], reverse=True)
# Return top k results
return results[:top_k]
except Exception as e:
logger.error(f"Error in semantic search: {str(e)}. Falling back to keyword search.")
# Fallback to keyword search
return keyword_search(query, items, top_k)
def keyword_search(query: str, items: List[Dict[str, Any]], top_k: int = 10) -> List[Dict[str, Any]]:
"""Fallback keyword search when semantic search fails
Args:
query: Search query
items: List of items to search
top_k: Number of top results to return
Returns:
List of items sorted by relevance
"""
logger.info(f"Performing keyword search for query: {query}")
# Prepare query terms
query_terms = re.findall(r'\w+', query.lower())
if not query_terms:
return []
results = []
for item in items:
text = extract_text_from_item(item).lower()
# Calculate simple relevance score based on term frequency
score = 0
for term in query_terms:
term_count = text.count(term)
if term_count > 0:
# Give more weight to terms in title
title = item.get("title", "").lower()
title_count = title.count(term)
score += (term_count + title_count * 2) # Title matches count double
if score > 0:
item_copy = item.copy()
item_copy["relevance_score"] = score
results.append(item_copy)
# Sort by relevance score
results.sort(key=lambda x: x["relevance_score"], reverse=True)
# Return top k results
return results[:top_k]
def find_similar_items(item: Dict[str, Any], items: List[Dict[str, Any]], top_k: int = 3) -> List[Dict[str, Any]]:
"""Find items similar to a given item
Args:
item: Reference item
items: List of items to search
top_k: Number of top results to return
Returns:
List of similar items
"""
if not item or not items:
return []
# Extract text from reference item
reference_text = extract_text_from_item(item)
if not reference_text.strip():
return []
try:
# Get embedding for reference item
model = get_embedding_model()
reference_embedding = model.encode([reference_text], convert_to_numpy=True)
# Get embeddings for items
item_embeddings, valid_items = get_item_embeddings(items)
if len(valid_items) == 0:
return []
# Calculate similarity scores
similarity_scores = cosine_similarity(reference_embedding, item_embeddings)[0]
# Create result items with scores
results = []
for i, (similar_item, score) in enumerate(zip(valid_items, similarity_scores)):
# Skip the reference item itself
if similar_item.get("id") == item.get("id"):
continue
similar_item_copy = similar_item.copy()
similar_item_copy["similarity_score"] = float(score)
results.append(similar_item_copy)
# Sort by similarity score
results.sort(key=lambda x: x["similarity_score"], reverse=True)
# Return top k results
return results[:top_k]
except Exception as e:
logger.error(f"Error finding similar items: {str(e)}. Falling back to keyword similarity.")
return keyword_similarity(item, items, top_k)
def keyword_similarity(item: Dict[str, Any], items: List[Dict[str, Any]], top_k: int = 3) -> List[Dict[str, Any]]:
"""Fallback keyword-based similarity when semantic similarity fails
Args:
item: Reference item
items: List of items to search
top_k: Number of top results to return
Returns:
List of similar items
"""
# Extract text from reference item
reference_text = extract_text_from_item(item).lower()
if not reference_text.strip():
return []
# Extract words from reference text
reference_words = set(re.findall(r'\w+', reference_text))
results = []
for other_item in items:
# Skip the reference item itself
if other_item.get("id") == item.get("id"):
continue
other_text = extract_text_from_item(other_item).lower()
other_words = set(re.findall(r'\w+', other_text))
# Calculate Jaccard similarity
if not other_words or not reference_words:
continue
intersection = len(reference_words.intersection(other_words))
union = len(reference_words.union(other_words))
similarity = intersection / union if union > 0 else 0
if similarity > 0:
other_item_copy = other_item.copy()
other_item_copy["similarity_score"] = similarity
results.append(other_item_copy)
# Sort by similarity score
results.sort(key=lambda x: x["similarity_score"], reverse=True)
# Return top k results
return results[:top_k]
def build_knowledge_graph(items: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Build a simple knowledge graph from items
Args:
items: List of items to include in the graph
Returns:
Knowledge graph as a dictionary
"""
graph = {
"nodes": [],
"edges": []
}
# Track node IDs to avoid duplicates
node_ids = set()
# Add items as nodes
for item in items:
item_id = item.get("id")
if not item_id or item_id in node_ids:
continue
node_type = item.get("type", "unknown")
node = {
"id": item_id,
"label": item.get("title", "Untitled"),
"type": node_type
}
graph["nodes"].append(node)
node_ids.add(item_id)
# Find connections between nodes
for i, item1 in enumerate(items):
item1_id = item1.get("id")
if not item1_id or item1_id not in node_ids:
continue
# Find similar items
similar_items = find_similar_items(item1, items, top_k=5)
for similar_item in similar_items:
similar_id = similar_item.get("id")
if not similar_id or similar_id not in node_ids or similar_id == item1_id:
continue
# Add edge between items
edge = {
"source": item1_id,
"target": similar_id,
"weight": similar_item.get("similarity_score", 0.5),
"type": "similar"
}
graph["edges"].append(edge)
return graph
def detect_duplicates(items: List[Dict[str, Any]], threshold: float = 0.85) -> List[List[Dict[str, Any]]]:
"""Detect potential duplicate items
Args:
items: List of items to check
threshold: Similarity threshold for considering items as duplicates
Returns:
List of groups of duplicate items
"""
if not items or len(items) < 2:
return []
try:
# Get embeddings for items
item_embeddings, valid_items = get_item_embeddings(items)
if len(valid_items) < 2:
return []
# Calculate pairwise similarity
similarity_matrix = cosine_similarity(item_embeddings)
# Find duplicate groups
duplicate_groups = []
processed = set()
for i in range(len(valid_items)):
if i in processed:
continue
group = [valid_items[i]]
processed.add(i)
for j in range(i+1, len(valid_items)):
if j in processed:
continue
if similarity_matrix[i, j] >= threshold:
group.append(valid_items[j])
processed.add(j)
if len(group) > 1:
duplicate_groups.append(group)
return duplicate_groups
except Exception as e:
logger.error(f"Error detecting duplicates: {str(e)}")
return []
def cluster_content(items: List[Dict[str, Any]], num_clusters: int = 5) -> Dict[str, List[Dict[str, Any]]]:
"""Cluster content into groups
Args:
items: List of items to cluster
num_clusters: Number of clusters to create
Returns:
Dictionary mapping cluster labels to lists of items
"""
if not items or len(items) < num_clusters:
return {}
try:
# Get embeddings for items
item_embeddings, valid_items = get_item_embeddings(items)
if len(valid_items) < num_clusters:
return {}
# Perform clustering
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=min(num_clusters, len(valid_items)), random_state=42)
cluster_labels = kmeans.fit_predict(item_embeddings)
# Group items by cluster
clusters = defaultdict(list)
for i, label in enumerate(cluster_labels):
clusters[str(label)].append(valid_items[i])
# Generate cluster names based on common terms
named_clusters = {}
for label, cluster_items in clusters.items():
# Extract all text from cluster items
cluster_text = " ".join([extract_text_from_item(item) for item in cluster_items])
# Find most common words (excluding stopwords)
words = re.findall(r'\b[a-zA-Z]{3,}\b', cluster_text.lower())
word_counts = defaultdict(int)
# Simple stopwords list
stopwords = {"the", "and", "for", "with", "this", "that", "from", "have", "not"}
for word in words:
if word not in stopwords:
word_counts[word] += 1
# Get top words
top_words = sorted(word_counts.items(), key=lambda x: x[1], reverse=True)[:3]
if top_words:
cluster_name = ", ".join([word for word, _ in top_words])
named_clusters[cluster_name] = cluster_items
else:
named_clusters[f"Cluster {label}"] = cluster_items
return named_clusters
except Exception as e:
logger.error(f"Error clustering content: {str(e)}")
return {}
def identify_trends(items: List[Dict[str, Any]], time_field: str = "created_at") -> Dict[str, Any]:
"""Identify trends in content over time
Args:
items: List of items to analyze
time_field: Field containing timestamp
Returns:
Dictionary with trend information
"""
if not items:
return {}
try:
import datetime
from collections import Counter
# Group items by time periods
daily_counts = defaultdict(int)
weekly_counts = defaultdict(int)
monthly_counts = defaultdict(int)
# Track topics over time
topics_by_month = defaultdict(Counter)
for item in items:
timestamp = item.get(time_field)
if not timestamp:
continue
# Convert timestamp to datetime
if isinstance(timestamp, (int, float)):
dt = datetime.datetime.fromtimestamp(timestamp)
elif isinstance(timestamp, str):
try:
dt = datetime.datetime.fromisoformat(timestamp.replace('Z', '+00:00'))
except ValueError:
continue
else:
continue
# Count by time period
date_str = dt.strftime("%Y-%m-%d")
week_str = dt.strftime("%Y-%W")
month_str = dt.strftime("%Y-%m")
daily_counts[date_str] += 1
weekly_counts[week_str] += 1
monthly_counts[month_str] += 1
# Extract topics (tags or keywords)
topics = []
if "tags" in item and item["tags"]:
if isinstance(item["tags"], list):
topics.extend(item["tags"])
elif isinstance(item["tags"], str):
topics.extend(item["tags"].split(","))
# If no tags, extract keywords from title
if not topics and "title" in item:
title_words = re.findall(r'\b[a-zA-Z]{3,}\b', item["title"].lower())
stopwords = {"the", "and", "for", "with", "this", "that", "from", "have", "not"}
topics = [word for word in title_words if word not in stopwords][:3]
# Add topics to monthly counter
for topic in topics:
topics_by_month[month_str][topic] += 1
# Find trending topics by month
trending_topics = {}
for month, counter in topics_by_month.items():
trending_topics[month] = counter.most_common(5)
# Calculate growth rates
growth_rates = {}
if len(monthly_counts) >= 2:
months = sorted(monthly_counts.keys())
for i in range(1, len(months)):
current_month = months[i]
prev_month = months[i-1]
current_count = monthly_counts[current_month]
prev_count = monthly_counts[prev_month]
if prev_count > 0:
growth_rate = (current_count - prev_count) / prev_count * 100
growth_rates[current_month] = growth_rate
return {
"daily_counts": dict(daily_counts),
"weekly_counts": dict(weekly_counts),
"monthly_counts": dict(monthly_counts),
"trending_topics": trending_topics,
"growth_rates": growth_rates
}
except Exception as e:
logger.error(f"Error identifying trends: {str(e)}")
return {}
def identify_information_gaps(items: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Identify potential information gaps in the content
Args:
items: List of items to analyze
Returns:
List of identified information gaps
"""
if not items:
return []
try:
# Cluster the content
clusters = cluster_content(items)
# Identify potential gaps based on cluster sizes and coverage
gaps = []
# Find small clusters that might need more content
for cluster_name, cluster_items in clusters.items():
if len(cluster_items) <= 2: # Small clusters might indicate gaps
gaps.append({
"type": "underdeveloped_topic",
"topic": cluster_name,
"description": f"Limited content on topic: {cluster_name}",
"item_count": len(cluster_items),
"sample_items": [item.get("title", "Untitled") for item in cluster_items]
})
# Identify potential missing connections between clusters
if len(clusters) >= 2:
cluster_names = list(clusters.keys())
for i in range(len(cluster_names)):
for j in range(i+1, len(cluster_names)):
name1 = cluster_names[i]
name2 = cluster_names[j]
# Check if there are connections between clusters
has_connection = False
for item1 in clusters[name1]:
similar_items = find_similar_items(item1, clusters[name2], top_k=1)
if similar_items and similar_items[0].get("similarity_score", 0) > 0.5:
has_connection = True
break
if not has_connection:
gaps.append({
"type": "missing_connection",
"topics": [name1, name2],
"description": f"Potential missing connection between {name1} and {name2}"
})
return gaps
except Exception as e:
logger.error(f"Error identifying information gaps: {str(e)}")
return [] |