import os import torch from typing import Dict, List, Any, Union, Optional, Tuple import numpy as np from pathlib import Path import requests import json import time from utils.config import AI_MODELS from utils.logging import get_logger, log_performance from utils.error_handling import handle_ai_model_exceptions, AIModelError, ValidationError from utils.semantic_search import search_content, find_similar_items, detect_duplicates, cluster_content, build_knowledge_graph, identify_trends, identify_information_gaps # Initialize logger logger = get_logger(__name__) # Set environment variable to use CPU if no GPU available os.environ["CUDA_VISIBLE_DEVICES"] = "" if not torch.cuda.is_available() else "0" # Global cache for loaded models MODEL_CACHE = {} @handle_ai_model_exceptions def get_model(task: str, model_name: Optional[str] = None): """ Load and cache AI models Args: task: Task type (text_generation, question_answering, image_captioning, etc.) model_name: Name of the model on HuggingFace (optional, uses default from config if None) Returns: Loaded model and tokenizer/processor Raises: AIModelError: If there's an error loading the model ValidationError: If the task is not supported """ # Get model name from config if not provided if model_name is None: if task not in AI_MODELS: logger.error(f"Unsupported task: {task}") raise ValidationError(f"Unsupported task: {task}") model_name = AI_MODELS[task]["name"] cache_key = f"{model_name}_{task}" # Return cached model if available if cache_key in MODEL_CACHE: logger.debug(f"Using cached model for {task}: {model_name}") return MODEL_CACHE[cache_key] logger.info(f"Loading model for {task}: {model_name}") start_time = time.time() try: if task == "text_generation": from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) MODEL_CACHE[cache_key] = (model, tokenizer) elif task == "question_answering": from transformers import AutoModelForQuestionAnswering, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForQuestionAnswering.from_pretrained(model_name) MODEL_CACHE[cache_key] = (model, tokenizer) elif task == "image_captioning": from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained(model_name) model = BlipForConditionalGeneration.from_pretrained(model_name) MODEL_CACHE[cache_key] = (model, processor) elif task == "speech_to_text": from transformers import WhisperProcessor, WhisperForConditionalGeneration processor = WhisperProcessor.from_pretrained(model_name) model = WhisperForConditionalGeneration.from_pretrained(model_name) MODEL_CACHE[cache_key] = (model, processor) elif task == "translation": from transformers import AutoModelForSeq2SeqLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) MODEL_CACHE[cache_key] = (model, tokenizer) elif task == "sentiment": from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) MODEL_CACHE[cache_key] = (model, tokenizer) elif task == "summarization": from transformers import AutoModelForSeq2SeqLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) MODEL_CACHE[cache_key] = (model, tokenizer) elif task == "code_generation": from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) MODEL_CACHE[cache_key] = (model, tokenizer) else: logger.error(f"Unsupported task: {task}") raise ValidationError(f"Unsupported task: {task}") # Log performance elapsed_time = (time.time() - start_time) * 1000 # Convert to ms log_performance(f"load_model_{task}", elapsed_time) logger.info(f"Model loaded successfully for {task}: {model_name} in {elapsed_time:.2f}ms") return MODEL_CACHE[cache_key] except Exception as e: logger.error(f"Error loading model {model_name} for task {task}: {str(e)}") raise AIModelError(f"Error loading model {model_name} for task {task}", {"original_error": str(e)}) from e @handle_ai_model_exceptions def generate_text(prompt: str, max_length: Optional[int] = None, temperature: Optional[float] = None) -> str: """ Generate text using DialoGPT-medium Args: prompt: Input prompt max_length: Maximum length of generated text (uses config default if None) temperature: Temperature for sampling (uses config default if None) Returns: Generated text Raises: AIModelError: If there's an error generating text """ task = "text_generation" model_config = AI_MODELS[task] model_name = model_config["name"] # Use config defaults if not provided if max_length is None: max_length = model_config.get("max_length", 100) if temperature is None: temperature = model_config.get("temperature", 0.7) logger.debug(f"Generating text with prompt: {prompt[:50]}...") start_time = time.time() model, tokenizer = get_model(task) try: # Encode the input and generate response inputs = tokenizer.encode(prompt + tokenizer.eos_token, return_tensors="pt") with torch.no_grad(): outputs = model.generate( inputs, max_length=max_length, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=50, top_p=0.95, temperature=temperature ) # Decode and return the response response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Log performance and usage elapsed_time = (time.time() - start_time) * 1000 # Convert to ms log_performance("generate_text", elapsed_time) log_ai_model_usage(model_name, "text_generation", len(inputs[0]) + len(outputs[0])) logger.debug(f"Text generated successfully in {elapsed_time:.2f}ms") return response except Exception as e: logger.error(f"Error generating text: {str(e)}") raise AIModelError(f"Error generating text", {"original_error": str(e)}) from e @handle_ai_model_exceptions def answer_question(question: str, context: str) -> str: """ Answer a question based on the given context Args: question: Question to answer context: Context for the question Returns: Answer to the question Raises: AIModelError: If there's an error answering the question """ task = "question_answering" model_name = AI_MODELS[task]["name"] logger.debug(f"Answering question: {question}") start_time = time.time() model, tokenizer = get_model(task) try: # Encode the input inputs = tokenizer(question, context, return_tensors="pt") # Get model output with torch.no_grad(): outputs = model(**inputs) # Get answer span answer_start = torch.argmax(outputs.start_logits) answer_end = torch.argmax(outputs.end_logits) + 1 # Convert to answer text answer = tokenizer.convert_tokens_to_string( tokenizer.convert_ids_to_tokens(inputs.input_ids[0][answer_start:answer_end]) ) # Log performance and usage elapsed_time = (time.time() - start_time) * 1000 # Convert to ms log_performance("answer_question", elapsed_time) log_ai_model_usage(model_name, "question_answering", len(inputs.input_ids[0])) logger.debug(f"Question answered successfully in {elapsed_time:.2f}ms") return answer if answer else "No answer found" except Exception as e: logger.error(f"Error answering question: {str(e)}") raise AIModelError(f"Error answering question", {"original_error": str(e)}) from e @handle_ai_model_exceptions def analyze_sentiment(text: str) -> Dict[str, float]: """ Analyze sentiment of text Args: text: Text to analyze Returns: Dictionary with sentiment scores Raises: AIModelError: If there's an error analyzing sentiment """ task = "sentiment" model_name = AI_MODELS[task]["name"] logger.debug(f"Analyzing sentiment of text: {text[:50]}...") start_time = time.time() model, tokenizer = get_model(task) try: # Encode the input inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) # Get model output with torch.no_grad(): outputs = model(**inputs) # Get sentiment scores scores = torch.nn.functional.softmax(outputs.logits, dim=1) scores = scores.detach().numpy()[0] # Map scores to labels labels = ["negative", "neutral", "positive"] results = {label: float(score) for label, score in zip(labels, scores)} # Log performance and usage elapsed_time = (time.time() - start_time) * 1000 # Convert to ms log_performance("analyze_sentiment", elapsed_time) log_ai_model_usage(model_name, "sentiment_analysis", len(inputs.input_ids[0])) logger.debug(f"Sentiment analysis completed successfully in {elapsed_time:.2f}ms") return results except Exception as e: logger.error(f"Error analyzing sentiment: {str(e)}") raise AIModelError(f"Error analyzing sentiment", {"original_error": str(e)}) from e @handle_ai_model_exceptions def summarize_text(text: str, max_length: Optional[int] = None, min_length: Optional[int] = None) -> str: """ Summarize text using BART Args: text: Text to summarize max_length: Maximum length of summary (uses config default if None) min_length: Minimum length of summary (uses config default if None) Returns: Summarized text Raises: AIModelError: If there's an error summarizing text """ task = "summarization" model_config = AI_MODELS[task] model_name = model_config["name"] # Use config defaults if not provided if max_length is None: max_length = model_config.get("max_length", 150) if min_length is None: min_length = model_config.get("min_length", 40) logger.debug(f"Summarizing text: {text[:50]}...") start_time = time.time() model, tokenizer = get_model(task) try: # Encode the input inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024) # Generate summary with torch.no_grad(): summary_ids = model.generate( inputs.input_ids, max_length=max_length, min_length=min_length, num_beams=4, early_stopping=True ) # Decode summary summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) # Log performance and usage elapsed_time = (time.time() - start_time) * 1000 # Convert to ms log_performance("summarize_text", elapsed_time) log_ai_model_usage(model_name, "summarization", len(inputs.input_ids[0]) + len(summary_ids[0])) logger.debug(f"Text summarization completed successfully in {elapsed_time:.2f}ms") return summary except Exception as e: logger.error(f"Error summarizing text: {str(e)}") raise AIModelError(f"Error summarizing text", {"original_error": str(e)}) from e @handle_ai_model_exceptions def get_weather(city: str) -> Dict[str, Any]: """ Get weather information for a city using a free weather API Args: city: City name Returns: Weather information Raises: AIModelError: If there's an error getting weather information """ logger.debug(f"Getting weather for city: {city}") start_time = time.time() try: # Using OpenWeatherMap API with a free tier (requires signup but free) # In a real app, you would store this in an environment variable # For demo purposes, we'll use a mock response # Mock response for demo weather_data = { "location": city, "temperature": 22, # Celsius "condition": "Partly Cloudy", "humidity": 65, "wind_speed": 10, "forecast": [ {"day": "Today", "high": 24, "low": 18, "condition": "Partly Cloudy"}, {"day": "Tomorrow", "high": 26, "low": 19, "condition": "Sunny"}, {"day": "Day After", "high": 23, "low": 17, "condition": "Rain"} ] } # Log performance elapsed_time = (time.time() - start_time) * 1000 # Convert to ms log_performance("get_weather", elapsed_time) logger.debug(f"Weather data retrieved successfully in {elapsed_time:.2f}ms") return weather_data except Exception as e: logger.error(f"Error getting weather: {str(e)}") raise AIModelError(f"Error getting weather information", {"original_error": str(e)}) from e @handle_ai_model_exceptions def generate_motivation_quote() -> str: """ Generate a motivational quote using DialoGPT Returns: Motivational quote Raises: AIModelError: If there's an error generating the quote """ logger.debug("Generating motivational quote") prompts = [ "Share an inspiring quote about productivity.", "What's a motivational quote for success?", "Give me a quote about achieving goals.", "Share wisdom about staying focused.", "What's a good quote about perseverance?" ] import random prompt = random.choice(prompts) return generate_text(prompt, max_length=50) @handle_ai_model_exceptions def generate_daily_plan(tasks: List[Dict[str, Any]], goals: List[Dict[str, Any]]) -> str: """ Generate a daily plan based on tasks and goals Args: tasks: List of tasks goals: List of goals Returns: Generated daily plan Raises: AIModelError: If there's an error generating the plan """ logger.debug("Generating daily plan") # Create a prompt based on tasks and goals active_tasks = [task for task in tasks if not task.get("completed", False)][:5] active_goals = [goal for goal in goals if not goal.get("completed", False)][:3] task_list = "\n".join([f"- {task.get('title', 'Untitled Task')}" for task in active_tasks]) goal_list = "\n".join([f"- {goal.get('title', 'Untitled Goal')}" for goal in active_goals]) prompt = f"""Create a productive daily plan based on these tasks and goals: Tasks: {task_list} Goals: {goal_list} Daily Plan:""" return generate_text(prompt, max_length=300) @handle_ai_model_exceptions def break_down_task(task_title: str, task_description: str) -> List[str]: """ Break down a task into subtasks using AI Args: task_title: Title of the task task_description: Description of the task Returns: List of subtasks Raises: AIModelError: If there's an error breaking down the task """ logger.debug(f"Breaking down task: {task_title}") prompt = f"""Break down this task into 3-5 actionable subtasks: Task: {task_title} Description: {task_description} Subtasks:""" response = generate_text(prompt, max_length=200) # Parse the response into a list of subtasks subtasks = [] for line in response.split("\n"): line = line.strip() if line and (line.startswith("-") or line.startswith("*") or (len(line) > 2 and line[0].isdigit() and line[1] == '.')): # Remove leading dash, asterisk, or number subtask = line[2:].strip() if line[1] == ' ' else line[1:].strip() subtasks.append(subtask) # If parsing failed, create some generic subtasks if not subtasks: logger.warning(f"Failed to parse subtasks for {task_title}, using generic subtasks") subtasks = [ f"Research for {task_title}", f"Create draft for {task_title}", f"Review and finalize {task_title}" ] return subtasks @handle_ai_model_exceptions def estimate_task_time(task_title: str, task_description: str) -> int: """ Estimate time needed for a task in minutes Args: task_title: Title of the task task_description: Description of the task Returns: Estimated time in minutes Raises: AIModelError: If there's an error estimating the time """ logger.debug(f"Estimating time for task: {task_title}") prompt = f"""Estimate how many minutes this task will take: Task: {task_title} Description: {task_description} Estimated minutes:""" response = generate_text(prompt, max_length=10) # Try to extract a number from the response import re numbers = re.findall(r'\d+', response) if numbers: # Use the first number found try: minutes = int(numbers[0]) # Cap at reasonable limits return min(max(minutes, 5), 480) # Between 5 minutes and 8 hours except ValueError: logger.warning(f"Failed to parse time estimate from response: {response}") # Default estimate based on task title length as a fallback logger.warning(f"Using fallback time estimate for {task_title}") return min(len(task_title) * 5, 120) # Default between 5 and 120 minutes