Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,348 Bytes
4b72318 63d778a 4b72318 63d778a 4b72318 63d778a 4b72318 62f7909 4b72318 63d778a 62f7909 4b72318 63d778a 4b72318 63d778a 4b72318 63d778a 4b72318 63d778a 4b72318 63d778a 4b72318 63d778a 4b72318 63d778a 4b72318 0100eae 4b72318 319cfac 4b72318 319cfac 62f7909 4b72318 0100eae 4b72318 0100eae 4b72318 02daaea 4b72318 62f7909 4b72318 75f27bc 4b72318 63d778a 4b72318 62f7909 4b72318 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 |
# -*- coding: utf-8 -*-
# --- Imports ---
import os
import random
import uuid
import json
import time
import traceback
import re
import gradio as gr
import torch
import numpy as np
import scipy.io.wavfile as wavfile
import requests
from dotenv import load_dotenv
# --- Whisper Import ---
try:
import whisper
print("Whisper library imported successfully.")
except ImportError:
print("ERROR: Whisper library not found. Please install it:")
print("pip install -U openai-whisper")
print("Ensure ffmpeg is also installed and in your system PATH.")
exit(1)
# --- SNAC Import ---
try:
from snac import SNAC
except ImportError:
print("ERROR: SNAC library not found. Please install it:")
print("pip install git+https://github.com/hubertsiuzdak/snac.git")
exit(1)
# --- Load Environment Variables ---
load_dotenv()
# --- Unified Server Configuration ---
SERVER_BASE_URL = os.getenv("SERVER_BASE_URL", "http://127.0.0.1:1234")
# Ollama Configuration
OLLAMA_API_ENDPOINT = f"{SERVER_BASE_URL}/v1/chat/completions"
OLLAMA_MODEL = "dolphin3.0-llama3.1-8b-abliterated" # Updated model name
OLLAMA_SYSTEM_PROMPT = "You in a chat with conscenting adults and you are an impatient midwestern foul mouthed 32 year old who just wants a link to github to get the code. You hate demos... You share a range of emotions in your responses of a single sentence where you keep asking in lightly profane creative ways for the link."
# TTS Configuration
TTS_API_ENDPOINT = f"{SERVER_BASE_URL}/v1/completions"
TTS_MODEL = "mrrtmob/tts-khm-3"
# --- Device Setup ---
if torch.cuda.is_available():
tts_device = "cuda"
stt_device = "cuda"
print("SNAC vocoder and Whisper STT will use CUDA if possible.")
else:
tts_device = "cpu"
stt_device = "cpu"
print("CUDA not available. SNAC vocoder and Whisper STT will use CPU.")
# --- Model Loading ---
print("Loading SNAC vocoder model...")
snac_model = None
try:
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(tts_device)
snac_model.eval()
print(f"SNAC vocoder loaded to {tts_device}")
except Exception as e:
print(f"Error loading SNAC model: {e}")
print("Loading Whisper STT model...")
WHISPER_MODEL_NAME = "base.en"
whisper_model = None
try:
whisper_model = whisper.load_model(WHISPER_MODEL_NAME, device=stt_device)
print(f"Whisper model '{WHISPER_MODEL_NAME}' loaded successfully.")
except Exception as e:
print(f"Error loading Whisper model: {e}")
# --- Constants ---
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_OLLAMA_MAX_TOKENS = -1 # Updated to match model's recommendation
MAX_SEED = np.iinfo(np.int32).max
ORPHEUS_MIN_ID = 10
ORPHEUS_TOKENS_PER_LAYER = 4096
ORPHEUS_N_LAYERS = 7
ORPHEUS_MAX_ID = ORPHEUS_MIN_ID + (ORPHEUS_N_LAYERS * ORPHEUS_TOKENS_PER_LAYER)
DEFAULT_OLLAMA_TEMP = 0.7
DEFAULT_OLLAMA_TOP_P = 0.9
DEFAULT_OLLAMA_TOP_K = 40
DEFAULT_OLLAMA_REP_PENALTY = 1.1
DEFAULT_TTS_TEMP = 0.4
DEFAULT_TTS_TOP_P = 0.9
DEFAULT_TTS_TOP_K = 40
DEFAULT_TTS_REP_PENALTY = 1.1
CONTEXT_TURN_LIMIT = 3
# --- Utility Functions ---
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def clean_chat_history(limited_chat_history):
cleaned_ollama_format = []
if not limited_chat_history:
return []
for user_msg_display, bot_msg_display in limited_chat_history:
user_text = None
if isinstance(user_msg_display, str):
if user_msg_display.startswith("🎤 (Audio Input): "):
user_text = user_msg_display.split("🎤 (Audio Input): ", 1)[1]
elif user_msg_display.startswith(("@tara-tts ", "@tara-llm ")):
user_text = user_msg_display.split(" ", 1)[1]
else:
user_text = user_msg_display
elif isinstance(user_msg_display, tuple):
if len(user_msg_display) > 1 and isinstance(user_msg_display[1], str):
user_text = user_msg_display[1].replace("🎤: ", "")
elif isinstance(user_msg_display[0], str) and not user_msg_display[0].endswith((".wav", ".mp3")):
user_text = user_msg_display[0]
bot_text = None
if isinstance(bot_msg_display, tuple):
if len(bot_msg_display) > 1 and isinstance(bot_msg_display[1], str):
bot_text = bot_msg_display[1]
elif isinstance(bot_msg_display, str):
if not bot_msg_display.startswith(("[Error", "(Error", "Sorry,", "(No input", "Processing", "(TTS failed")):
bot_text = bot_msg_display
if user_text and user_text.strip():
cleaned_ollama_format.append({"role": "user", "content": user_text})
if bot_text and bot_text.strip():
cleaned_ollama_format.append({"role": "assistant", "content": bot_text})
return cleaned_ollama_format
# --- TTS Pipeline Functions ---
def parse_gguf_codes(response_text):
absolute_ids = []
matches = re.findall(r"<custom_token_(\d+)>", response_text)
if not matches:
return []
for number_str in matches:
try:
token_id = int(number_str)
if ORPHEUS_MIN_ID <= token_id < ORPHEUS_MAX_ID:
absolute_ids.append(token_id)
except ValueError:
continue
print(f" - Parsed {len(absolute_ids)} valid audio token IDs using regex.")
return absolute_ids
def redistribute_codes(absolute_code_list, target_snac_model):
if not absolute_code_list or target_snac_model is None:
return None
snac_device = next(target_snac_model.parameters()).device
layer_1, layer_2, layer_3 = [], [], []
num_tokens = len(absolute_code_list)
num_groups = num_tokens // ORPHEUS_N_LAYERS
if num_groups == 0:
return None
print(f" - Processing {num_groups} groups of {ORPHEUS_N_LAYERS} codes for SNAC...")
for i in range(num_groups):
base_idx = i * ORPHEUS_N_LAYERS
if base_idx + ORPHEUS_N_LAYERS > num_tokens:
break
group_codes = absolute_code_list[base_idx:base_idx + ORPHEUS_N_LAYERS]
processed_group = [None] * ORPHEUS_N_LAYERS
valid_group = True
for j, token_id in enumerate(group_codes):
if not (ORPHEUS_MIN_ID <= token_id < ORPHEUS_MAX_ID):
valid_group = False
break
layer_index = (token_id - ORPHEUS_MIN_ID) // ORPHEUS_TOKENS_PER_LAYER
code_index = (token_id - ORPHEUS_MIN_ID) % ORPHEUS_TOKENS_PER_LAYER
if layer_index != j:
valid_group = False
break
processed_group[j] = code_index
if not valid_group:
continue
try:
layer_1.append(processed_group[0])
layer_2.append(processed_group[1])
layer_3.append(processed_group[2])
layer_3.append(processed_group[3])
layer_2.append(processed_group[4])
layer_3.append(processed_group[5])
layer_3.append(processed_group[6])
except (IndexError, TypeError):
continue
try:
if not layer_1 or not layer_2 or not layer_3:
return None
print(f" - Final SNAC layer sizes: L1={len(layer_1)}, L2={len(layer_2)}, L3={len(layer_3)}")
codes = [
torch.tensor(layer_1, device=snac_device, dtype=torch.long).unsqueeze(0),
torch.tensor(layer_2, device=snac_device, dtype=torch.long).unsqueeze(0),
torch.tensor(layer_3, device=snac_device, dtype=torch.long).unsqueeze(0)
]
with torch.no_grad():
audio_hat = target_snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy()
except Exception as e:
print(f"Error during tensor creation or SNAC decoding: {e}")
return None
def generate_speech_gguf(text, voice, tts_temperature, tts_top_p, tts_repetition_penalty, max_new_tokens_audio):
if not text.strip() or snac_model is None:
return None
print(f"Generating speech via TTS server for: '{text[:50]}...'")
start_time = time.time()
payload = {
"model": TTS_MODEL,
"prompt": f"<|audio|>{voice}: {text}<|eot_id|>",
"temperature": tts_temperature,
"top_p": tts_top_p,
"repeat_penalty": tts_repetition_penalty,
"max_tokens": max_new_tokens_audio,
"stop": ["<|eot_id|>", "<|audio|>"],
"stream": False
}
print(f" - Sending payload to {TTS_API_ENDPOINT} (Model: {TTS_MODEL})")
try:
headers = {"Content-Type": "application/json"}
response = requests.post(
TTS_API_ENDPOINT,
json=payload,
headers=headers,
timeout=180
)
response.raise_for_status()
response_json = response.json()
print(f" - Raw TTS response: {json.dumps(response_json, indent=2)[:200]}...")
if "choices" in response_json and len(response_json["choices"]) > 0:
raw_generated_text = response_json["choices"][0].get("text", "").strip()
if not raw_generated_text:
print("Error: Empty text in TTS response")
return None
req_time = time.time()
print(f" - TTS server request took {req_time - start_time:.2f}s")
absolute_id_list = parse_gguf_codes(raw_generated_text)
if not absolute_id_list:
print("Error: No valid audio codes parsed. Raw text:", raw_generated_text[:200])
return None
audio_samples = redistribute_codes(absolute_id_list, snac_model)
if audio_samples is None:
print("Error: Failed to generate audio samples from tokens")
return None
snac_time = time.time()
print(f" - Generated audio samples via SNAC, shape: {audio_samples.shape}")
print(f" - Total TTS generation time: {snac_time - start_time:.2f}s")
return (24000, audio_samples)
else:
print(f"Error: Unexpected TTS response format: {response_json}")
return None
except requests.exceptions.RequestException as e:
print(f"Error during request to TTS server: {e}")
return None
except Exception as e:
print(f"Error during TTS generation pipeline: {e}")
traceback.print_exc()
return None
# --- Ollama Communication Helper ---
def call_ollama_non_streaming(ollama_payload, generation_params):
final_response = "[Error: Default response]"
try:
payload = {
"model": OLLAMA_MODEL,
"messages": ollama_payload["messages"],
"temperature": generation_params.get('ollama_temperature', DEFAULT_OLLAMA_TEMP),
"top_p": generation_params.get('ollama_top_p', DEFAULT_OLLAMA_TOP_P),
"max_tokens": generation_params.get('ollama_max_new_tokens', DEFAULT_OLLAMA_MAX_TOKENS),
"repeat_penalty": generation_params.get('ollama_repetition_penalty', DEFAULT_OLLAMA_REP_PENALTY),
"stream": False
}
print(f" - Sending to {OLLAMA_API_ENDPOINT} with model {OLLAMA_MODEL}")
headers = {"Content-Type": "application/json"}
start_time = time.time()
response = requests.post(
OLLAMA_API_ENDPOINT,
json=payload,
headers=headers,
timeout=180
)
response.raise_for_status()
response_json = response.json()
end_time = time.time()
print(f" - LLM request took {end_time - start_time:.2f}s")
if "choices" in response_json and len(response_json["choices"]) > 0:
choice = response_json["choices"][0]
if "message" in choice:
final_response = choice["message"]["content"].strip()
elif "text" in choice:
final_response = choice["text"].strip()
else:
final_response = "[Error: Unexpected response format]"
else:
final_response = f"[Error: {response_json.get('error', 'Unknown error')}]"
except requests.exceptions.RequestException as e:
final_response = f"[Error connecting to LLM: {e}]"
except Exception as e:
final_response = f"[Unexpected Error: {e}]"
traceback.print_exc()
print(f" - LLM response: '{final_response[:100]}...'")
return final_response
# --- Main Gradio Backend Function ---
def process_input_blocks(
text_input: str, audio_input_path: str,
auto_prefix_tts_checkbox: bool,
auto_prefix_llm_checkbox: bool,
plain_llm_checkbox: bool,
ollama_max_new_tokens: int, ollama_temperature: float, ollama_top_p: float,
ollama_top_k: int, ollama_repetition_penalty: float,
tts_temperature: float, tts_top_p: float, tts_repetition_penalty: float,
chat_history: list
):
global whisper_model, snac_model
original_user_input_text = ""
user_display_input = None
text_to_process = ""
transcription_source = "text"
bot_response = ""
bot_audio_tuple = None
audio_filepath_to_clean = None
is_purely_text_input = False
prefix_to_add = None
force_plain_llm = False
# Handle Audio Input
if audio_input_path and whisper_model:
if os.path.isfile(audio_input_path):
audio_filepath_to_clean = audio_input_path
transcription_source = "voice"
print(f"Processing audio input: {audio_input_path}")
try:
stt_start_time = time.time()
result = whisper_model.transcribe(audio_input_path, fp16=(stt_device == 'cuda'))
original_user_input_text = result["text"].strip()
stt_end_time = time.time()
print(f" - Whisper transcription: '{original_user_input_text}' (took {stt_end_time - stt_start_time:.2f}s)")
user_display_input = f"🎤 (Audio Input): {original_user_input_text}"
text_to_process = original_user_input_text
# Check if transcription is already a command
known_prefixes = ["@tara-tts", "@jess-tts", "@leo-tts", "@leah-tts", "@dan-tts", "@mia-tts", "@zac-tts", "@zoe-tts",
"@tara-llm", "@jess-llm", "@leo-llm", "@leah-llm", "@dan-llm", "@mia-llm", "@zac-llm", "@zoe-llm"]
is_already_command = any(original_user_input_text.lower().startswith(p) for p in known_prefixes)
if not is_already_command:
if plain_llm_checkbox:
prefix_to_add = None
force_plain_llm = True
print(f" - Plain LLM checked. Processing audio as text input for LLM.")
elif auto_prefix_tts_checkbox:
prefix_to_add = "@tara-tts"
print(f" - Auto-prefix TTS checked. Applying to audio.")
elif auto_prefix_llm_checkbox:
prefix_to_add = "@tara-llm"
print(f" - Auto-prefix LLM checked. Applying to audio.")
else:
print(f" - No default prefix checkbox checked for audio. Processing as text for LLM.")
if prefix_to_add:
text_to_process = f"{prefix_to_add} {original_user_input_text}"
else:
print(f" - Transcribed audio is already a command '{original_user_input_text[:20]}...'.")
text_to_process = original_user_input_text
except Exception as e:
print(f"Error during Whisper transcription: {e}")
traceback.print_exc()
error_msg = f"[Error during local transcription: {e}]"
chat_history.append((f"🎤 (Audio Input Error: {audio_input_path})", error_msg))
if audio_filepath_to_clean and os.path.exists(audio_filepath_to_clean):
try:
os.remove(audio_filepath_to_clean)
except Exception as e_clean:
print(f"Warning: Could not clean up STT temp file {audio_filepath_to_clean}: {e_clean}")
return chat_history, None, None
else:
print(f"Received invalid audio path: {audio_input_path}, falling back to text.")
# Handle Text Input
if not text_to_process and text_input:
original_user_input_text = text_input.strip()
user_display_input = original_user_input_text
print(f"Processing text input: '{original_user_input_text}'")
transcription_source = "text"
text_to_process = original_user_input_text
known_prefixes = ["@tara-tts", "@jess-tts", "@leo-tts", "@leah-tts", "@dan-tts", "@mia-tts", "@zac-tts", "@zoe-tts",
"@tara-llm", "@jess-llm", "@leo-llm", "@leah-llm", "@dan-llm", "@mia-llm", "@zac-llm", "@zoe-llm"]
is_already_command = any(original_user_input_text.lower().startswith(p) for p in known_prefixes)
if not is_already_command:
if plain_llm_checkbox:
prefix_to_add = None
force_plain_llm = True
print(f" - Plain LLM checked. Processing text input for LLM.")
elif auto_prefix_tts_checkbox:
prefix_to_add = "@tara-tts"
print(f" - Auto-prefix TTS checked. Applying to text.")
elif auto_prefix_llm_checkbox:
prefix_to_add = "@tara-llm"
print(f" - Auto-prefix LLM checked. Applying to text.")
else:
print(f" - No default prefix checkbox enabled for text input.")
else:
print(f" - User provided command in text '{original_user_input_text[:20]}...', not auto-prepending.")
if prefix_to_add:
text_to_process = f"{prefix_to_add} {original_user_input_text}"
# Cleanup audio file
if audio_filepath_to_clean and os.path.exists(audio_filepath_to_clean):
try:
os.remove(audio_filepath_to_clean)
print(f" - Cleaned up temporary STT audio file: {audio_filepath_to_clean}")
except Exception as e_clean:
print(f"Warning: Could not clean up temp STT audio file {audio_filepath_to_clean}: {e_clean}")
if not text_to_process:
print("No valid text or audio input to process.")
return chat_history, None, None
chat_history.append((user_display_input, None))
# Process Input Text
lower_text = text_to_process.lower()
print(f" - Routing query ({transcription_source}): '{text_to_process[:100]}...'")
all_voices = ["tara", "jess", "leo", "leah", "dan", "mia", "zac", "zoe"]
tts_tags = {f"@{voice}-tts": voice for voice in all_voices}
llm_tags = {f"@{voice}-llm": voice for voice in all_voices}
final_bot_message = None
try:
matched_tts = False
matched_llm_tts = False
# Check Branches
if not force_plain_llm:
# Branch 1: Direct TTS
for tag, voice in tts_tags.items():
if lower_text.startswith(tag):
matched_tts = True
text_to_speak = text_to_process[len(tag):].strip()
print(f" - Direct TTS request for voice '{voice}': '{text_to_speak[:50]}...'")
if snac_model is None:
raise ValueError("SNAC vocoder not loaded.")
audio_output = generate_speech_gguf(
text_to_speak, voice,
tts_temperature, tts_top_p, tts_repetition_penalty,
MAX_MAX_NEW_TOKENS
)
if audio_output:
sample_rate, audio_data = audio_output
if audio_data.dtype != np.int16:
if np.issubdtype(audio_data.dtype, np.floating):
max_val = np.max(np.abs(audio_data))
audio_data = np.int16(audio_data/max_val*32767) if max_val > 1e-6 else np.zeros_like(audio_data, dtype=np.int16)
else:
audio_data = audio_data.astype(np.int16)
temp_dir = "temp_audio_files"
os.makedirs(temp_dir, exist_ok=True)
temp_audio_path = os.path.join(temp_dir, f"temp_audio_{uuid.uuid4().hex}.wav")
wavfile.write(temp_audio_path, sample_rate, audio_data)
print(f" - Saved TTS audio: {temp_audio_path}")
final_bot_message = (temp_audio_path, None)
else:
final_bot_message = f"Sorry, couldn't generate speech for '{text_to_speak[:50]}...'."
break
# Branch 2: LLM + TTS
if not matched_tts:
for tag, voice in llm_tags.items():
if lower_text.startswith(tag):
matched_llm_tts = True
prompt_for_llm = text_to_process[len(tag):].strip()
print(f" - LLM+TTS request for voice '{voice}': '{prompt_for_llm[:75]}...'")
if snac_model is None:
raise ValueError("SNAC vocoder not loaded.")
history_before_current = chat_history[:-1]
limited_history_turns = history_before_current[-CONTEXT_TURN_LIMIT:]
cleaned_hist_for_llm = clean_chat_history(limited_history_turns)
messages = [
{"role": "system", "content": OLLAMA_SYSTEM_PROMPT}
] + cleaned_hist_for_llm + [
{"role": "user", "content": prompt_for_llm}
]
llm_params = {
'ollama_temperature': ollama_temperature,
'ollama_top_p': ollama_top_p,
'ollama_top_k': ollama_top_k,
'ollama_max_new_tokens': ollama_max_new_tokens,
'ollama_repetition_penalty': ollama_repetition_penalty
}
llm_response_text = call_ollama_non_streaming(
{"messages": messages},
llm_params
)
if llm_response_text and not llm_response_text.startswith("[Error"):
audio_output = generate_speech_gguf(
llm_response_text, voice,
tts_temperature, tts_top_p, tts_repetition_penalty,
MAX_MAX_NEW_TOKENS
)
if audio_output:
sample_rate, audio_data = audio_output
if audio_data.dtype != np.int16:
if np.issubdtype(audio_data.dtype, np.floating):
max_val = np.max(np.abs(audio_data))
audio_data = np.int16(audio_data/max_val*32767) if max_val > 1e-6 else np.zeros_like(audio_data, dtype=np.int16)
else:
audio_data = audio_data.astype(np.int16)
temp_dir = "temp_audio_files"
os.makedirs(temp_dir, exist_ok=True)
temp_audio_path = os.path.join(temp_dir, f"temp_audio_{uuid.uuid4().hex}.wav")
wavfile.write(temp_audio_path, sample_rate, audio_data)
print(f" - Saved LLM+TTS audio: {temp_audio_path}")
final_bot_message = (temp_audio_path, llm_response_text)
else:
print("Warning: TTS generation failed...")
final_bot_message = f"{llm_response_text}\n\n(TTS failed...)"
else:
final_bot_message = llm_response_text
break
# Branch 3: Plain LLM
if force_plain_llm or (not matched_tts and not matched_llm_tts):
if force_plain_llm:
print(f" - Plain LLM chat mode forced by checkbox...")
else:
print(f" - Default text chat (no command prefix detected/added)...")
history_before_current = chat_history[:-1]
limited_history_turns = history_before_current[-CONTEXT_TURN_LIMIT:]
cleaned_hist_for_llm = clean_chat_history(limited_history_turns)
messages = [
{"role": "system", "content": OLLAMA_SYSTEM_PROMPT}
] + cleaned_hist_for_llm + [
{"role": "user", "content": original_user_input_text}
]
llm_params = {
'ollama_temperature': ollama_temperature,
'ollama_top_p': ollama_top_p,
'ollama_top_k': ollama_top_k,
'ollama_max_new_tokens': ollama_max_new_tokens,
'ollama_repetition_penalty': ollama_repetition_penalty
}
final_bot_message = call_ollama_non_streaming(
{"messages": messages},
llm_params
)
except Exception as e:
print(f"Error during processing: {e}")
traceback.print_exc()
final_bot_message = f"[An unexpected error occurred: {e}]"
chat_history[-1] = (user_display_input, final_bot_message)
return chat_history, None, None
# --- Gradio Interface ---
def update_prefix_checkboxes(selected_checkbox_label):
if selected_checkbox_label == "tts":
return gr.update(value=True), gr.update(value=False), gr.update(value=False)
elif selected_checkbox_label == "llm":
return gr.update(value=False), gr.update(value=True), gr.update(value=False)
elif selected_checkbox_label == "plain":
return gr.update(value=False), gr.update(value=False), gr.update(value=True)
else:
return gr.update(), gr.update(), gr.update()
print("Setting up Gradio Interface with gr.Blocks...")
theme_to_use = None
with gr.Blocks(theme=theme_to_use) as demo:
gr.Markdown(f"# Orpheus Edge 🎤 ({OLLAMA_MODEL}) Chat & TTS")
chatbot = gr.Chatbot(label="Chat History", height=500)
with gr.Row():
with gr.Column(scale=3):
text_input_box = gr.Textbox(label="Type your message or use microphone", lines=2)
with gr.Column(scale=1):
audio_input_mic = gr.Audio(label="Record Audio Input", type="filepath")
with gr.Row():
auto_prefix_tts_checkbox = gr.Checkbox(label="Default to TTS (@tara-tts)", value=True, elem_id="cb_tts")
auto_prefix_llm_checkbox = gr.Checkbox(label="Default to LLM+TTS (@tara-llm)", value=False, elem_id="cb_llm")
plain_llm_checkbox = gr.Checkbox(label="Plain LLM Chat (Text Out)", value=False, elem_id="cb_plain")
with gr.Row():
submit_button = gr.Button("Send / Submit")
clear_button = gr.ClearButton([text_input_box, audio_input_mic, chatbot])
with gr.Accordion("Generation Parameters", open=False):
gr.Markdown("### LLM Parameters")
ollama_max_new_tokens_slider = gr.Slider(label="Max New Tokens", minimum=32, maximum=4096, step=32, value=DEFAULT_OLLAMA_MAX_TOKENS)
ollama_temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=2.0, step=0.05, value=DEFAULT_OLLAMA_TEMP)
ollama_top_p_slider = gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=DEFAULT_OLLAMA_TOP_P)
ollama_top_k_slider = gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=DEFAULT_OLLAMA_TOP_K)
ollama_repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=DEFAULT_OLLAMA_REP_PENALTY)
gr.Markdown("---")
gr.Markdown("### TTS Parameters")
tts_temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=2.0, step=0.05, value=DEFAULT_TTS_TEMP)
tts_top_p_slider = gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=DEFAULT_TTS_TOP_P)
tts_repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=DEFAULT_TTS_REP_PENALTY)
param_inputs = [
ollama_max_new_tokens_slider, ollama_temperature_slider, ollama_top_p_slider,
ollama_top_k_slider, ollama_repetition_penalty_slider,
tts_temperature_slider, tts_top_p_slider, tts_repetition_penalty_slider
]
auto_prefix_tts_checkbox.change(
lambda: update_prefix_checkboxes("tts"),
None,
[auto_prefix_tts_checkbox, auto_prefix_llm_checkbox, plain_llm_checkbox]
)
auto_prefix_llm_checkbox.change(
lambda: update_prefix_checkboxes("llm"),
None,
[auto_prefix_tts_checkbox, auto_prefix_llm_checkbox, plain_llm_checkbox]
)
plain_llm_checkbox.change(
lambda: update_prefix_checkboxes("plain"),
None,
[auto_prefix_tts_checkbox, auto_prefix_llm_checkbox, plain_llm_checkbox]
)
all_inputs = [
text_input_box, audio_input_mic,
auto_prefix_tts_checkbox, auto_prefix_llm_checkbox, plain_llm_checkbox
] + param_inputs + [chatbot]
submit_button.click(
fn=process_input_blocks,
inputs=all_inputs,
outputs=[chatbot, text_input_box, audio_input_mic]
)
text_input_box.submit(
fn=process_input_blocks,
inputs=all_inputs,
outputs=[chatbot, text_input_box, audio_input_mic]
)
# --- Application Entry Point ---
if __name__ == "__main__":
print("-" * 50)
print(f"Launching Gradio {gr.__version__} Interface")
print(f"Whisper STT Model: {WHISPER_MODEL_NAME} on {stt_device}")
print(f"SNAC Vocoder loaded to {tts_device}")
print(f"Server URL: {SERVER_BASE_URL}")
print(f"LLM Model: {OLLAMA_MODEL}")
print(f"TTS Model: {TTS_MODEL}")
print("-" * 50)
print("Default Parameters:")
print(f" LLM: Temp={DEFAULT_OLLAMA_TEMP}, TopP={DEFAULT_OLLAMA_TOP_P}")
print(f" TTS: Temp={DEFAULT_TTS_TEMP}, TopP={DEFAULT_TTS_TOP_P}")
print("-" * 50)
print("Ensure your LM Studio server is running with both models loaded")
os.makedirs("temp_audio_files", exist_ok=True)
demo.launch(share=False)
print("Gradio Interface launched. Press Ctrl+C to stop.") |