Spaces:
Running
on
Zero
Running
on
Zero
token
Browse files
app.py
CHANGED
@@ -1,20 +1,35 @@
|
|
|
|
1 |
import spaces
|
2 |
from snac import SNAC
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
-
from huggingface_hub import snapshot_download
|
7 |
from dotenv import load_dotenv
|
|
|
8 |
load_dotenv()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Check if CUDA is available
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
11 |
print("Loading SNAC model...")
|
12 |
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
13 |
snac_model = snac_model.to(device)
|
|
|
14 |
model_name = "mrrtmob/tts-khm-kore"
|
15 |
-
|
|
|
16 |
snapshot_download(
|
17 |
repo_id=model_name,
|
|
|
18 |
allow_patterns=[
|
19 |
"config.json",
|
20 |
"*.safetensors",
|
@@ -33,41 +48,47 @@ snapshot_download(
|
|
33 |
"tokenizer.*"
|
34 |
]
|
35 |
)
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
model.to(device)
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
print(f"Khmer TTS model loaded to {device}")
|
|
|
40 |
# Process text prompt
|
41 |
def process_prompt(prompt, voice, tokenizer, device):
|
42 |
prompt = f"{voice}: {prompt}"
|
43 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
44 |
-
|
45 |
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
|
46 |
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
|
47 |
-
|
48 |
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH
|
49 |
-
|
50 |
# No padding needed for single input
|
51 |
attention_mask = torch.ones_like(modified_input_ids)
|
52 |
-
|
53 |
return modified_input_ids.to(device), attention_mask.to(device)
|
|
|
54 |
# Parse output tokens to audio
|
55 |
def parse_output(generated_ids):
|
56 |
token_to_find = 128257
|
57 |
token_to_remove = 128258
|
58 |
-
|
59 |
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
60 |
if len(token_indices[1]) > 0:
|
61 |
last_occurrence_idx = token_indices[1][-1].item()
|
62 |
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
|
63 |
else:
|
64 |
cropped_tensor = generated_ids
|
65 |
-
|
66 |
processed_rows = []
|
67 |
for row in cropped_tensor:
|
68 |
masked_row = row[row != token_to_remove]
|
69 |
processed_rows.append(masked_row)
|
70 |
-
|
71 |
code_lists = []
|
72 |
for row in processed_rows:
|
73 |
row_length = row.size(0)
|
@@ -75,12 +96,11 @@ def parse_output(generated_ids):
|
|
75 |
trimmed_row = row[:new_length]
|
76 |
trimmed_row = [t - 128266 for t in trimmed_row]
|
77 |
code_lists.append(trimmed_row)
|
78 |
-
|
79 |
return code_lists[0] # Return just the first one for single sample
|
|
|
80 |
# Redistribute codes for audio generation
|
81 |
def redistribute_codes(code_list, snac_model):
|
82 |
device = next(snac_model.parameters()).device # Get the device of SNAC model
|
83 |
-
|
84 |
layer_1 = []
|
85 |
layer_2 = []
|
86 |
layer_3 = []
|
@@ -92,26 +112,23 @@ def redistribute_codes(code_list, snac_model):
|
|
92 |
layer_2.append(code_list[7*i+4]-(4*4096))
|
93 |
layer_3.append(code_list[7*i+5]-(5*4096))
|
94 |
layer_3.append(code_list[7*i+6]-(6*4096))
|
95 |
-
|
96 |
# Move tensors to the same device as the SNAC model
|
97 |
codes = [
|
98 |
torch.tensor(layer_1, device=device).unsqueeze(0),
|
99 |
torch.tensor(layer_2, device=device).unsqueeze(0),
|
100 |
torch.tensor(layer_3, device=device).unsqueeze(0)
|
101 |
]
|
102 |
-
|
103 |
audio_hat = snac_model.decode(codes)
|
104 |
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
|
|
|
105 |
# Main generation function
|
106 |
@spaces.GPU()
|
107 |
def generate_speech(text, temperature=0.6, top_p=0.95, repetition_penalty=1.1, max_new_tokens=1200, voice="Elise", progress=gr.Progress()):
|
108 |
if not text.strip():
|
109 |
return None
|
110 |
-
|
111 |
try:
|
112 |
progress(0.1, "Processing text...")
|
113 |
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
114 |
-
|
115 |
progress(0.3, "Generating speech tokens...")
|
116 |
with torch.no_grad():
|
117 |
generated_ids = model.generate(
|
@@ -125,17 +142,15 @@ def generate_speech(text, temperature=0.6, top_p=0.95, repetition_penalty=1.1, m
|
|
125 |
num_return_sequences=1,
|
126 |
eos_token_id=128258,
|
127 |
)
|
128 |
-
|
129 |
progress(0.6, "Processing speech tokens...")
|
130 |
code_list = parse_output(generated_ids)
|
131 |
-
|
132 |
progress(0.8, "Converting to audio...")
|
133 |
audio_samples = redistribute_codes(code_list, snac_model)
|
134 |
-
|
135 |
return (24000, audio_samples) # Return sample rate and audio
|
136 |
except Exception as e:
|
137 |
print(f"Error generating speech: {e}")
|
138 |
return None
|
|
|
139 |
# Examples for the UI - Khmer text examples
|
140 |
examples = [
|
141 |
["ជំរាបសួរ ខ្ញុំឈ្មោះ Kiri ហើយខ្ញុំជា AI ដែលអាចបម្លែងអត្ថបទទៅជាសំលេង។"],
|
@@ -149,69 +164,64 @@ examples = [
|
|
149 |
["ខ្ញុំដើរទៅទិញអីញ៉ាំ ស្រាប់តែឃើញឆ្កែធំមួយរត់មករកខ្ញុំ។ <gasp> ខ្ញុំភ័យណាស់! តែវារត់ទៅបាត់វិញ។ <sigh>"], # I was walking to buy something when suddenly I saw a big dog running towards me. <gasp> I was so scared! But then it ran away. <sigh>
|
150 |
["អរគុណច្រើនសម្រាប់ជំនួយ។ <chuckle> បើគ្មានអ្នកទេ ខ្ញុំមិនដឹងធ្វើយ៉ាងម៉េចទេ។"],
|
151 |
]
|
|
|
152 |
# Available voices (commented out for simpler UI)
|
153 |
# VOICES = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe", "jing", "Elise"]
|
|
|
154 |
# Available Emotive Tags
|
155 |
EMOTIVE_TAGS = ["`<laugh>`", "`<chuckle>`", "`<sigh>`", "`<cough>`", "`<sniffle>`", "`<groan>`", "`<yawn>`", "`<gasp>`"]
|
|
|
156 |
# Create Gradio interface
|
157 |
with gr.Blocks(title="Khmer Text-to-Speech") as demo:
|
158 |
gr.Markdown(f"""
|
159 |
# 🎵 Khmer Text-to-Speech
|
160 |
**ម៉ូដែលបម្លែងអត្ថបទជាសំលេង**
|
161 |
-
|
162 |
បញ្ចូលអត្ថបទខ្មែររបស់អ្នក ហើយស្តាប់ការបម្លែងទៅជាសំលេងនិយាយ។
|
163 |
-
|
164 |
💡 **Tips**: Add emotive tags like {", ".join(EMOTIVE_TAGS)} for more expressive speech!
|
165 |
""")
|
166 |
-
|
167 |
text_input = gr.Textbox(
|
168 |
-
label="Enter Khmer text (បញ្ចូលអត្ថបទខ្មែរ)",
|
169 |
placeholder="បញ្ចូលអត្ថបទខ្មែររបស់អ្នកនៅទីនេះ...",
|
170 |
lines=4
|
171 |
)
|
172 |
-
|
173 |
# Voice selector (commented out)
|
174 |
# voice = gr.Dropdown(
|
175 |
-
# choices=VOICES,
|
176 |
-
# value="tara",
|
177 |
# label="Voice (សំលេង)"
|
178 |
# )
|
179 |
-
|
180 |
# Advanced Settings
|
181 |
with gr.Accordion("🔧 Advanced Settings", open=False):
|
182 |
with gr.Row():
|
183 |
temperature = gr.Slider(
|
184 |
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
|
185 |
-
label="Temperature",
|
186 |
info="Higher values create more expressive speech"
|
187 |
)
|
188 |
top_p = gr.Slider(
|
189 |
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
190 |
-
label="Top P",
|
191 |
info="Nucleus sampling threshold"
|
192 |
)
|
193 |
with gr.Row():
|
194 |
repetition_penalty = gr.Slider(
|
195 |
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
|
196 |
-
label="Repetition Penalty",
|
197 |
info="Higher values discourage repetitive patterns"
|
198 |
)
|
199 |
max_new_tokens = gr.Slider(
|
200 |
minimum=100, maximum=2000, value=1200, step=100,
|
201 |
-
label="Max Length",
|
202 |
info="Maximum length of generated audio"
|
203 |
)
|
204 |
-
|
205 |
with gr.Row():
|
206 |
submit_btn = gr.Button("🎤 Generate Speech", variant="primary", size="lg")
|
207 |
clear_btn = gr.Button("🗑️ Clear", size="lg")
|
208 |
-
|
209 |
audio_output = gr.Audio(
|
210 |
-
label="Generated Speech (សំលេងដែលបង្កើតឡើង)",
|
211 |
type="numpy",
|
212 |
show_label=True
|
213 |
)
|
214 |
-
|
215 |
# Set up examples (NO CACHE)
|
216 |
gr.Examples(
|
217 |
examples=examples,
|
@@ -220,19 +230,18 @@ with gr.Blocks(title="Khmer Text-to-Speech") as demo:
|
|
220 |
fn=lambda text: generate_speech(text),
|
221 |
cache_examples=False,
|
222 |
)
|
223 |
-
|
224 |
# Set up event handlers
|
225 |
submit_btn.click(
|
226 |
fn=generate_speech,
|
227 |
inputs=[text_input, temperature, top_p, repetition_penalty, max_new_tokens],
|
228 |
outputs=audio_output
|
229 |
)
|
230 |
-
|
231 |
clear_btn.click(
|
232 |
fn=lambda: (None, None),
|
233 |
inputs=[],
|
234 |
outputs=[text_input, audio_output]
|
235 |
)
|
|
|
236 |
# Launch the app
|
237 |
if __name__ == "__main__":
|
238 |
demo.queue().launch(share=False)
|
|
|
1 |
+
import os
|
2 |
import spaces
|
3 |
from snac import SNAC
|
4 |
import torch
|
5 |
import gradio as gr
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
from huggingface_hub import snapshot_download, login
|
8 |
from dotenv import load_dotenv
|
9 |
+
|
10 |
load_dotenv()
|
11 |
+
|
12 |
+
# Get HF token from environment variables
|
13 |
+
hf_token = os.getenv("HF_TOKEN")
|
14 |
+
if hf_token:
|
15 |
+
login(token=hf_token)
|
16 |
+
print("Successfully logged in to Hugging Face")
|
17 |
+
else:
|
18 |
+
print("Warning: HF_TOKEN not found in environment variables")
|
19 |
+
|
20 |
# Check if CUDA is available
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
+
|
23 |
print("Loading SNAC model...")
|
24 |
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
25 |
snac_model = snac_model.to(device)
|
26 |
+
|
27 |
model_name = "mrrtmob/tts-khm-kore"
|
28 |
+
|
29 |
+
# Download only model config and safetensors with token
|
30 |
snapshot_download(
|
31 |
repo_id=model_name,
|
32 |
+
token=hf_token, # Add token here
|
33 |
allow_patterns=[
|
34 |
"config.json",
|
35 |
"*.safetensors",
|
|
|
48 |
"tokenizer.*"
|
49 |
]
|
50 |
)
|
51 |
+
|
52 |
+
# Load model and tokenizer with token
|
53 |
+
model = AutoModelForCausalLM.from_pretrained(
|
54 |
+
model_name,
|
55 |
+
torch_dtype=torch.bfloat16,
|
56 |
+
token=hf_token # Add token here
|
57 |
+
)
|
58 |
model.to(device)
|
59 |
+
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
61 |
+
model_name,
|
62 |
+
token=hf_token # Add token here
|
63 |
+
)
|
64 |
+
|
65 |
print(f"Khmer TTS model loaded to {device}")
|
66 |
+
|
67 |
# Process text prompt
|
68 |
def process_prompt(prompt, voice, tokenizer, device):
|
69 |
prompt = f"{voice}: {prompt}"
|
70 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
|
|
71 |
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
|
72 |
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
|
|
|
73 |
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH
|
|
|
74 |
# No padding needed for single input
|
75 |
attention_mask = torch.ones_like(modified_input_ids)
|
|
|
76 |
return modified_input_ids.to(device), attention_mask.to(device)
|
77 |
+
|
78 |
# Parse output tokens to audio
|
79 |
def parse_output(generated_ids):
|
80 |
token_to_find = 128257
|
81 |
token_to_remove = 128258
|
|
|
82 |
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
83 |
if len(token_indices[1]) > 0:
|
84 |
last_occurrence_idx = token_indices[1][-1].item()
|
85 |
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
|
86 |
else:
|
87 |
cropped_tensor = generated_ids
|
|
|
88 |
processed_rows = []
|
89 |
for row in cropped_tensor:
|
90 |
masked_row = row[row != token_to_remove]
|
91 |
processed_rows.append(masked_row)
|
|
|
92 |
code_lists = []
|
93 |
for row in processed_rows:
|
94 |
row_length = row.size(0)
|
|
|
96 |
trimmed_row = row[:new_length]
|
97 |
trimmed_row = [t - 128266 for t in trimmed_row]
|
98 |
code_lists.append(trimmed_row)
|
|
|
99 |
return code_lists[0] # Return just the first one for single sample
|
100 |
+
|
101 |
# Redistribute codes for audio generation
|
102 |
def redistribute_codes(code_list, snac_model):
|
103 |
device = next(snac_model.parameters()).device # Get the device of SNAC model
|
|
|
104 |
layer_1 = []
|
105 |
layer_2 = []
|
106 |
layer_3 = []
|
|
|
112 |
layer_2.append(code_list[7*i+4]-(4*4096))
|
113 |
layer_3.append(code_list[7*i+5]-(5*4096))
|
114 |
layer_3.append(code_list[7*i+6]-(6*4096))
|
|
|
115 |
# Move tensors to the same device as the SNAC model
|
116 |
codes = [
|
117 |
torch.tensor(layer_1, device=device).unsqueeze(0),
|
118 |
torch.tensor(layer_2, device=device).unsqueeze(0),
|
119 |
torch.tensor(layer_3, device=device).unsqueeze(0)
|
120 |
]
|
|
|
121 |
audio_hat = snac_model.decode(codes)
|
122 |
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
|
123 |
+
|
124 |
# Main generation function
|
125 |
@spaces.GPU()
|
126 |
def generate_speech(text, temperature=0.6, top_p=0.95, repetition_penalty=1.1, max_new_tokens=1200, voice="Elise", progress=gr.Progress()):
|
127 |
if not text.strip():
|
128 |
return None
|
|
|
129 |
try:
|
130 |
progress(0.1, "Processing text...")
|
131 |
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
|
|
132 |
progress(0.3, "Generating speech tokens...")
|
133 |
with torch.no_grad():
|
134 |
generated_ids = model.generate(
|
|
|
142 |
num_return_sequences=1,
|
143 |
eos_token_id=128258,
|
144 |
)
|
|
|
145 |
progress(0.6, "Processing speech tokens...")
|
146 |
code_list = parse_output(generated_ids)
|
|
|
147 |
progress(0.8, "Converting to audio...")
|
148 |
audio_samples = redistribute_codes(code_list, snac_model)
|
|
|
149 |
return (24000, audio_samples) # Return sample rate and audio
|
150 |
except Exception as e:
|
151 |
print(f"Error generating speech: {e}")
|
152 |
return None
|
153 |
+
|
154 |
# Examples for the UI - Khmer text examples
|
155 |
examples = [
|
156 |
["ជំរាបសួរ ខ្ញុំឈ្មោះ Kiri ហើយខ្ញុំជា AI ដែលអាចបម្លែងអត្ថបទទៅជាសំលេង។"],
|
|
|
164 |
["ខ្ញុំដើរទៅទិញអីញ៉ាំ ស្រាប់តែឃើញឆ្កែធំមួយរត់មករកខ្ញុំ។ <gasp> ខ្ញុំភ័យណាស់! តែវារត់ទៅបាត់វិញ។ <sigh>"], # I was walking to buy something when suddenly I saw a big dog running towards me. <gasp> I was so scared! But then it ran away. <sigh>
|
165 |
["អរគុណច្រើនសម្រាប់ជំនួយ។ <chuckle> បើគ្មានអ្នកទេ ខ្ញុំមិនដឹងធ្វើយ៉ាងម៉េចទេ។"],
|
166 |
]
|
167 |
+
|
168 |
# Available voices (commented out for simpler UI)
|
169 |
# VOICES = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe", "jing", "Elise"]
|
170 |
+
|
171 |
# Available Emotive Tags
|
172 |
EMOTIVE_TAGS = ["`<laugh>`", "`<chuckle>`", "`<sigh>`", "`<cough>`", "`<sniffle>`", "`<groan>`", "`<yawn>`", "`<gasp>`"]
|
173 |
+
|
174 |
# Create Gradio interface
|
175 |
with gr.Blocks(title="Khmer Text-to-Speech") as demo:
|
176 |
gr.Markdown(f"""
|
177 |
# 🎵 Khmer Text-to-Speech
|
178 |
**ម៉ូដែលបម្លែងអត្ថបទជាសំលេង**
|
|
|
179 |
បញ្ចូលអត្ថបទខ្មែររបស់អ្នក ហើយស្តាប់ការបម្លែងទៅជាសំលេងនិយាយ។
|
|
|
180 |
💡 **Tips**: Add emotive tags like {", ".join(EMOTIVE_TAGS)} for more expressive speech!
|
181 |
""")
|
|
|
182 |
text_input = gr.Textbox(
|
183 |
+
label="Enter Khmer text (បញ្ចូលអត្ថបទខ្មែរ)",
|
184 |
placeholder="បញ្ចូលអត្ថបទខ្មែររបស់អ្នកនៅទីនេះ...",
|
185 |
lines=4
|
186 |
)
|
|
|
187 |
# Voice selector (commented out)
|
188 |
# voice = gr.Dropdown(
|
189 |
+
# choices=VOICES,
|
190 |
+
# value="tara",
|
191 |
# label="Voice (សំលេង)"
|
192 |
# )
|
|
|
193 |
# Advanced Settings
|
194 |
with gr.Accordion("🔧 Advanced Settings", open=False):
|
195 |
with gr.Row():
|
196 |
temperature = gr.Slider(
|
197 |
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
|
198 |
+
label="Temperature",
|
199 |
info="Higher values create more expressive speech"
|
200 |
)
|
201 |
top_p = gr.Slider(
|
202 |
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
203 |
+
label="Top P",
|
204 |
info="Nucleus sampling threshold"
|
205 |
)
|
206 |
with gr.Row():
|
207 |
repetition_penalty = gr.Slider(
|
208 |
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
|
209 |
+
label="Repetition Penalty",
|
210 |
info="Higher values discourage repetitive patterns"
|
211 |
)
|
212 |
max_new_tokens = gr.Slider(
|
213 |
minimum=100, maximum=2000, value=1200, step=100,
|
214 |
+
label="Max Length",
|
215 |
info="Maximum length of generated audio"
|
216 |
)
|
|
|
217 |
with gr.Row():
|
218 |
submit_btn = gr.Button("🎤 Generate Speech", variant="primary", size="lg")
|
219 |
clear_btn = gr.Button("🗑️ Clear", size="lg")
|
|
|
220 |
audio_output = gr.Audio(
|
221 |
+
label="Generated Speech (សំលេងដែលបង្កើតឡើង)",
|
222 |
type="numpy",
|
223 |
show_label=True
|
224 |
)
|
|
|
225 |
# Set up examples (NO CACHE)
|
226 |
gr.Examples(
|
227 |
examples=examples,
|
|
|
230 |
fn=lambda text: generate_speech(text),
|
231 |
cache_examples=False,
|
232 |
)
|
|
|
233 |
# Set up event handlers
|
234 |
submit_btn.click(
|
235 |
fn=generate_speech,
|
236 |
inputs=[text_input, temperature, top_p, repetition_penalty, max_new_tokens],
|
237 |
outputs=audio_output
|
238 |
)
|
|
|
239 |
clear_btn.click(
|
240 |
fn=lambda: (None, None),
|
241 |
inputs=[],
|
242 |
outputs=[text_input, audio_output]
|
243 |
)
|
244 |
+
|
245 |
# Launch the app
|
246 |
if __name__ == "__main__":
|
247 |
demo.queue().launch(share=False)
|