Delete app.py
Browse files
app.py
DELETED
@@ -1,76 +0,0 @@
|
|
1 |
-
from PyPDF2 import PdfReader
|
2 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
-
from gtts import gTTS
|
4 |
-
import os
|
5 |
-
|
6 |
-
# Download the model and tokenizer
|
7 |
-
model_name = "ArtifactAI/led_large_16384_arxiv_summarization"
|
8 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
-
|
11 |
-
|
12 |
-
def summarize_and_speak_pdf_abstract(pdf_path):
|
13 |
-
"""
|
14 |
-
Reads a PDF file, extracts the abstract, summarizes it in one sentence, and generates an audio file of the summary.
|
15 |
-
|
16 |
-
Args:
|
17 |
-
pdf_path: Path to the PDF file.
|
18 |
-
"""
|
19 |
-
|
20 |
-
# Summarize the abstract
|
21 |
-
summary = summarize_pdf_abstract(pdf_path)
|
22 |
-
|
23 |
-
# Define language and audio format
|
24 |
-
language = "en" # Change this to your desired language
|
25 |
-
audio_format = "mp3"
|
26 |
-
|
27 |
-
# Create the text-to-speech object
|
28 |
-
tts = gTTS(text=summary, lang=language)
|
29 |
-
|
30 |
-
# Generate the audio file
|
31 |
-
audio_file_name = f"summary.{audio_format}"
|
32 |
-
tts.save(audio_file_name)
|
33 |
-
|
34 |
-
print(f"Audio file created: {audio_file_name}")
|
35 |
-
|
36 |
-
# Play the audio file (optional)
|
37 |
-
# os.system(f"play {audio_file_name}")
|
38 |
-
|
39 |
-
|
40 |
-
# Define the function to summarize the abstract
|
41 |
-
def summarize_pdf_abstract(pdf_path):
|
42 |
-
"""
|
43 |
-
Reads a PDF file, extracts the abstract, and summarizes it in one sentence.
|
44 |
-
|
45 |
-
Args:
|
46 |
-
pdf_path: Path to the PDF file.
|
47 |
-
|
48 |
-
Returns:
|
49 |
-
A string containing the one-sentence summary of the abstract.
|
50 |
-
"""
|
51 |
-
|
52 |
-
# Read the PDF file
|
53 |
-
reader = PdfReader(open(pdf_path, "rb"))
|
54 |
-
|
55 |
-
# Extract the abstract
|
56 |
-
abstract_text = ""
|
57 |
-
for page in reader.pages:
|
58 |
-
# Search for keywords like "Abstract" or "Introduction"
|
59 |
-
if (
|
60 |
-
"Abstract" in page.extract_text()
|
61 |
-
or "Introduction" in page.extract_text()
|
62 |
-
):
|
63 |
-
# Extract the text following the keyword
|
64 |
-
abstract_text = page.extract_text()
|
65 |
-
break
|
66 |
-
|
67 |
-
# Encode the abstract text
|
68 |
-
inputs = tokenizer(abstract_text, return_tensors="pt")
|
69 |
-
|
70 |
-
# Generate the summary
|
71 |
-
outputs = model.generate(**inputs)
|
72 |
-
|
73 |
-
# Decode the summary
|
74 |
-
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
75 |
-
|
76 |
-
return summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|