Spaces:
Sleeping
Sleeping
chore: add fisize
Browse files
app.py
CHANGED
@@ -104,7 +104,14 @@ os.makedirs("plots", exist_ok=True)
|
|
104 |
|
105 |
|
106 |
def plot_distances(
|
107 |
-
model,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
):
|
109 |
"""
|
110 |
Plots all languages from the distances matrix using t-SNE.
|
@@ -143,6 +150,7 @@ def plot_distances(
|
|
143 |
filtered_languages,
|
144 |
clusters,
|
145 |
legends,
|
|
|
146 |
)
|
147 |
fig.tight_layout()
|
148 |
fig.savefig(plot_path, format="pdf")
|
@@ -323,6 +331,14 @@ with gr.Blocks() as demo:
|
|
323 |
plot_umap_button = gr.Button("Plot UMAP")
|
324 |
plot_mst_button = gr.Button("Plot MST")
|
325 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
with gr.Row():
|
327 |
download_plot_button = gr.DownloadButton("Download Plot")
|
328 |
|
@@ -359,6 +375,8 @@ with gr.Blocks() as demo:
|
|
359 |
average_checkbox,
|
360 |
cluster_method_input,
|
361 |
clusters_input,
|
|
|
|
|
362 |
],
|
363 |
outputs=[plot_output, download_plot_button],
|
364 |
)
|
|
|
104 |
|
105 |
|
106 |
def plot_distances(
|
107 |
+
model,
|
108 |
+
dataset,
|
109 |
+
use_average,
|
110 |
+
cluster_method,
|
111 |
+
cluster_method_param,
|
112 |
+
plot_fn,
|
113 |
+
figsize_h,
|
114 |
+
figsize_w,
|
115 |
):
|
116 |
"""
|
117 |
Plots all languages from the distances matrix using t-SNE.
|
|
|
150 |
filtered_languages,
|
151 |
clusters,
|
152 |
legends,
|
153 |
+
fig_size=(figsize_w, figsize_h),
|
154 |
)
|
155 |
fig.tight_layout()
|
156 |
fig.savefig(plot_path, format="pdf")
|
|
|
331 |
plot_umap_button = gr.Button("Plot UMAP")
|
332 |
plot_mst_button = gr.Button("Plot MST")
|
333 |
|
334 |
+
with gr.Row():
|
335 |
+
plot_figsize_dist_h_input = gr.Slider(
|
336 |
+
label="Figure Height", minimum=5, maximum=30, step=1, value=15
|
337 |
+
)
|
338 |
+
plot_figsize_dist_w_input = gr.Slider(
|
339 |
+
label="Figure Width", minimum=5, maximum=30, step=1, value=15
|
340 |
+
)
|
341 |
+
|
342 |
with gr.Row():
|
343 |
download_plot_button = gr.DownloadButton("Download Plot")
|
344 |
|
|
|
375 |
average_checkbox,
|
376 |
cluster_method_input,
|
377 |
clusters_input,
|
378 |
+
plot_figsize_dist_h_input,
|
379 |
+
plot_figsize_dist_w_input,
|
380 |
],
|
381 |
outputs=[plot_output, download_plot_button],
|
382 |
)
|
utils.py
CHANGED
@@ -212,7 +212,14 @@ def cluster_languages_hdbscan(dist_matrix, languages, min_cluster_size=2):
|
|
212 |
|
213 |
|
214 |
def plot_distances_tsne(
|
215 |
-
model,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
):
|
217 |
"""
|
218 |
Plots all languages from the distances matrix using t-SNE and colors them by clusters.
|
@@ -225,7 +232,7 @@ def plot_distances_tsne(
|
|
225 |
cmap = get_dynamic_color_map(len(unique_clusters))
|
226 |
cluster_colors = {cluster: cmap[i] for i, cluster in enumerate(unique_clusters)}
|
227 |
|
228 |
-
fig, ax = plt.subplots(figsize=
|
229 |
scatter = ax.scatter(
|
230 |
tsne_results[:, 0],
|
231 |
tsne_results[:, 1],
|
@@ -272,7 +279,14 @@ def plot_distances_tsne(
|
|
272 |
|
273 |
|
274 |
def plot_distances_umap(
|
275 |
-
model,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
):
|
277 |
"""
|
278 |
Plots all languages from the distances matrix using UMAP and colors them by clusters.
|
@@ -286,7 +300,7 @@ def plot_distances_umap(
|
|
286 |
cmap = get_dynamic_color_map(len(unique_clusters))
|
287 |
cluster_colors = {cluster: cmap[i] for i, cluster in enumerate(unique_clusters)}
|
288 |
|
289 |
-
fig, ax = plt.subplots(figsize=
|
290 |
scatter = ax.scatter(
|
291 |
umap_results[:, 0],
|
292 |
umap_results[:, 1],
|
|
|
212 |
|
213 |
|
214 |
def plot_distances_tsne(
|
215 |
+
model,
|
216 |
+
dataset,
|
217 |
+
use_average,
|
218 |
+
matrix,
|
219 |
+
languages,
|
220 |
+
clusters,
|
221 |
+
legend=None,
|
222 |
+
fig_size=(16, 12),
|
223 |
):
|
224 |
"""
|
225 |
Plots all languages from the distances matrix using t-SNE and colors them by clusters.
|
|
|
232 |
cmap = get_dynamic_color_map(len(unique_clusters))
|
233 |
cluster_colors = {cluster: cmap[i] for i, cluster in enumerate(unique_clusters)}
|
234 |
|
235 |
+
fig, ax = plt.subplots(figsize=fig_size)
|
236 |
scatter = ax.scatter(
|
237 |
tsne_results[:, 0],
|
238 |
tsne_results[:, 1],
|
|
|
279 |
|
280 |
|
281 |
def plot_distances_umap(
|
282 |
+
model,
|
283 |
+
dataset,
|
284 |
+
use_average,
|
285 |
+
matrix,
|
286 |
+
languages,
|
287 |
+
clusters,
|
288 |
+
legend=None,
|
289 |
+
fig_size=(16, 12),
|
290 |
):
|
291 |
"""
|
292 |
Plots all languages from the distances matrix using UMAP and colors them by clusters.
|
|
|
300 |
cmap = get_dynamic_color_map(len(unique_clusters))
|
301 |
cluster_colors = {cluster: cmap[i] for i, cluster in enumerate(unique_clusters)}
|
302 |
|
303 |
+
fig, ax = plt.subplots(figsize=fig_size)
|
304 |
scatter = ax.scatter(
|
305 |
umap_results[:, 0],
|
306 |
umap_results[:, 1],
|