VQA_medical_v2 / app.py
mshsahmed's picture
Create app.py
334a4bd verified
raw
history blame contribute delete
836 Bytes
import gradio as gr
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
# Load your model
processor = BlipProcessor.from_pretrained("mshsahmed/blip-vqa-finetuned-kvasir-v58849")
model = BlipForConditionalGeneration.from_pretrained("mshsahmed/blip-vqa-finetuned-kvasir-v58849")
def vqa_pipeline(image, question):
inputs = processor(image, question, return_tensors="pt")
out = model.generate(**inputs)
answer = processor.decode(out[0], skip_special_tokens=True)
return answer
iface = gr.Interface(
fn=vqa_pipeline,
inputs=[gr.Image(type="pil"), gr.Textbox(lines=1, placeholder="Ask a question...")],
outputs="text",
title="Medical VQA Demo",
description="Upload an image and ask a question. The model will answer based on the image content."
)
iface.launch()